Diameter Distributions and Yields Of Thinned Loblolly Pine Plantations

Publication No. FWS-1-82
School of Forestry and Wildlife Resources
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

DIAMETER DISTRIBUTIONS AND YIELDS OF THINNED LOBLOLLY PINE PLANTATIONS

bу

Quang V. Cao

Harold E. Burkhart

Ronald C. Lemin, Jr.

Publication No. FWS-1-82
School of Forestry and Wildlife Resources
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ACKNOWLEDGMENTS

The work reported here was financed in part by the Loblolly Pine Growth and Yield Research Cooperative. We gratefully acknowledge the Virginia Division of Forestry for the plot data used in this study. The plots were installed and remeasured by numerous foresters and wardens of the Virginia Division of Forestry who, in all cases, were assisted and supervised by a member of the Applied Research Branch of the Division.

AUTHORS

The authors are, respectively, Assistant Professor in the School of Forestry and Wildlife Management, Louisiana State University, Baton Rouge, LA 70803, and Thomas M. Brooks Professor and former Graduate Research Assistant in the Department of Forestry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.

ABSTRACT

A growth and yield model for thinned loblolly pine plantations was developed using data from 128 0.2-acre permanent plots in the Virginia Piedmont and Coastal Plain. The Weibull function, used to characterize stand diameter distributions, was searched to insure that the resulting total basal area and average dbh estimates were identical to those predicted from stand variables using regression equations. Program WTHIN was written in standard FORTRAN to provide stand and stock tables for thinned old-field loblolly pine plantations.

Trials with different thinning intensities indicated reasonable trends, as compared with published studies.

TABLE OF CONTENTS

	Page
List of Tables	
INTRODUCTION	1
PREVIOUS WORK	1
Whole Stand and Diameter Distribution Models	1
Modeling Thinned Loblolly Pine Stands	3
DEVELOPING THE THINNED-STAND MODEL	4
Data	4
Model for Thinned Loblolly Pine Plantations	4
Stand-level model	8
Deriving diameter distribution from stand attributes	8
RESULTS AND DISCUSSION	12
Program WTHIN	12
Prediction of the present stand	12
Thinning	13
Projection	13
Diameter distribution of a previously low-thinned stand	14
Effect of Thinning Regimes on Yield	15
Comparison with Published Information on Thinning	15
Coile and Schumacher's (1964) model	15
Yields reported by Goebel et al. (1974)	20
Possible Modifications and Refinements	23
LITERATURE CITED	24
APPENDICES	29

LIST OF TABLES

Table		Page
1	Description of plots immediately before and after thinning and amount of thinning.	5
2	Distribution of all observations by site index (base age 25 years), age, basal area, and number of trees per acre.	6
3	Regression equations that form a whole stand model for thinned loblolly pine plantations.	9
4	Total cubic-foot yield on a per acre basis of a loblolly pine plantation on site 60 land, with 800 trees and 130 square feet of basal area at age 15, by thinning option.	16
5	Comparison of predicted yields of Coile and Schumacher (1964) and those from program WTHIN on a per acre basis for thinned loblolly pine plantations.	21
б	Comparison of observed yields of Goebel et al. (1974) and predicted yields from program WTHIN on a per acre basis for thinned loblolly pine plantations.	22

DIAMETER DISTRIBUTIONS AND YIELDS

OF THINNED LOBLOLLY PINE PLANTATIONS

Quang V. Cao, Harold E. Burkhart, and Ronald C. Lemin, Jr.

INTRODUCTION

Growth and yield predictions are essential to forest management planning. Reliable growth and yield models assist managers in analyzing alternative management strategies. For loblolly pine (Pinus taeda L.), a myriad of yield information for unmanaged stands has accumulated over the years. On the other hand, yield models for thinned loblolly pine plantations still seem inadequate, and flexible models that supply information about diameter distributions are needed.

Different probability density functions (pdf's) have been used to characterize diameter distributions; most recently the beta, Weibull, and Johnson's $S_{\rm B}$ distributions have been employed to develop yield estimates. The so-called probability density function approach to yield modeling involves predicting the pdf parameters from stand variables (age, site, and density) using regression techniques, and then calculating the number of trees and yield per acre in each dbh class. The drawback of this approach is that the regression models for predicting the pdf parameters usually account for only a small percentage of the variation (i.e. low R^2 values). Recently, research has been conducted to develop methods for approximating the parameters in a theoretical diameter distribution (e.g. the beta or Weibull) from overall stand values such as total basal area and mean diameter (Hyink 1980, Frazier 1981, Matney and Sullivan 1982).

The objectives of this study were: (1) to develop a whole stand model for thinned loblolly pine plantations using regression techniques, and (2) to derive diameter distributions from the predicted stand attributes by assuming that the underlying dbh distribution is Weibull distributed.

PREVIOUS WORK

Whole Stand and Diameter Distribution Models

MacKinney and Chaiken (1939) used multiple linear regression techniques to predict the logarithm of yield as a function of stand variables (age, site, density, and composition). This approach, with

certain modifications, has been employed in more recent models for loblolly pine (such as Schumacher and Coile 1960, Coile and Schumacher 1964, Goebel and Warner 1969, Burkhart et al. 1972a, 1972b).

Growth and yield are not two separate attributes but are closely related to one another. Buckman (1962) developed a yield model for red pine where yield is obtained by mathematically integrating the growth equation over time. Clutter (1963) discussed this concept in detail and introduced a compatible growth and yield model which was later refined by Sullivan and Clutter (1972). A similar approach has been used by several other researchers including Brender and Clutter (1970), Bennett (1970), Beck and Della-Bianca (1972), Sullivan and Williston (1977), Murphy and Sternitzke (1979), and Murphy and Beltz (1981).

Diameter distributions in even-aged stands have been modeled with various probability density functions, among them the Gram-Charlier series (Meyer 1928, 1930; Schumacher 1928, 1930; Schumacher 1934), the modified Pearl-Reed growth curve (Osborne and Schumacher 1935, Nelson 1964), Pearsonnian curves (Schnur 1934), and the log-normal distribution (Bliss and Reinker 1964).

Bennett and Clutter (1968) developed a yield model to predict multiple-product yields for slash pine plantations by using the stand table generated from a beta pdf via the Clutter and Bennett (1965) diameter distribution model. In this yield model, the parameters of the beta function that approximated the diameter distribution were predicted from stand variables (age, site, and density). The number of trees and volume per acre in each diameter class were calculated and per acre yield estimates were obtained by summing over diameter classes of interest. A similar approach was applied to loblolly pine plantations by Lenhart and Clutter (1971), Lenhart (1972), and Burkhart and Strub (1974).

The main drawback of using the beta distribution is that its cumulative distribution function (cdf) does not exist in closed form. As a result, the proportion of trees in each diameter class has to be solved by numerical integration techniques. Bailey and Dell (1973) pointed out that the Weibull distribution fits diameter data well and its cdf exists in closed form. The Weibull function was applied in plantation yield models for loblolly pine (Smalley and Bailey 1974a, Feduccia et al. 1979), slash pine (Clutter and Belcher 1978, Dell et al. 1979), and shortleaf pine (Smalley and Bailey 1974b).

Strub and Burkhart (1975) presented a class-interval-free method for predicting whole stand yield per unit area from diameter distribution models:

$$TV = N \int_{L}^{U} g(D) f(D) dD$$

where

TV = expected stand volume per unit area,

N = number of trees per unit area,

D = diameter at breast height,

g(D) = individual tree volume equation,

f(D) = pdf for D, and

(L,U) = merchantability limits for the product described by g(D).

Using this relationship, Hyink (1980) introduced a method of solving for the parameters of the pdf approximating the diameter distribution, using attributes predicted from a whole stand model. The same concept was employed by Matney and Sullivan (1982) in their model for loblolly pine plantations. In the first phase of Matney and Sullivan's study, stand volume and basal area were predicted using compatible growth and yield equations. The second phase involved solving for two parameters of the Weibull pdf which characterized the diameter distribution such that the resulting stand volume and basal area per acre would be identical to those predicted in the first phase. Frazier (1981) investigated alternative formulations for estimating parameter values in the beta and Weibull distributions from stand attributes.

Modeling Thinned Loblolly Pine Stands

Coile and Schumacher (1964) included amount of thinning as input in their model. Different types of thinning (thinning by rows, from below, or by a combination of both) can be specified in Daniels and Burkhart's (1975) and Daniels et al.'s (1979) individual tree models. Other models based on data from thinned loblolly pine stands include Clutter (1963), Brender and Clutter (1970), Sullivan and Clutter (1972), and Sullivan and Williston (1977).

The Weibull function was used by Bailey et al. (1981) to describe diameter distribution of slash pine plantations before and after thinning. Matney and Sullivan (1982) also used the Weibull distribution to produce compatible stand and stock tables for thinned loblolly pine plantations. In addition to the models mentioned above, growth and yield of thinned loblolly pine stands have been reported by many researchers (such as Bassett 1966, Bruner and Goebel 1968, Andrulot et al. 1972, Shepard 1974, Goebel et al. 1974, Feduccia and Mann 1976, Burton 1980).

DEVELOPING THE THINNED-STAND MODEL

Data

The growth and yield model for thinned loblolly pine plantations developed in this study was based on data from the Virginia Division of Forestry (VDF). This data set consists of 128 0.2-acre permanent plots from old-field plantations in the Virginia Piedmont and Coastal Plain. Number of remeasurements varied from plot to plot, ranging from 1 to 7. There were a total of 490 plot measurements.

Diameter at breast height (dbh) was recorded to the nearest inch and total height was measured to the nearest foot. Trees in the l-and 2-inch classes were not tallied separately but combined to form one class whose midpoint was arbitrarily set at 1.5 inches. In each plot, measurements of dbh of all trees were taken but only some tree heights were measured. Height corresponding to each dbh class was predicted for each plot measurement using a regression equation of the form

$$\log_{e}(H) = b_0 + b_1/D,$$

where

H = total tree height in feet,

D = diameter at breast height in inches,

 b_0 , b_1 = regression coefficients.

Site index was determined from the average height of the dominants and codominants in each plot, using a site index equation developed by Devan (1979). Total cubic-foot volume outside bark per acre was computed using Burkhart \underline{et} \underline{al} .'s (1972b) individual tree volume equation.

The stands were thinned up to 3 times and, for the most part, thinnings were from below. However, some codominants and dominants were removed to improve the quality of the leave stand. The thinnings carried out were done during routine, operational thinnings of the plantations in which the plots were located. Table 1 presents a description of plots in this data set immediately before and after thinning. The distribution of all observations by site index, age, basal area, and number of trees per acre is presented in Table 2.

Model for Thinned Loblolly Pine Plantations

The model for thinned loblolly pine plantations developed in this study consisted of two stages. In the first stage, stand-level

Table 1. Description of plots immediately before and after thinning and amount of thinning. $\underline{a}/$

Variable	Fir	st thinn	ing	Subseq	uent thi	nnings
variabie	Before	Amount	After	Before	Amount	After
Number of trees,	acre/	· · · · · · · · · · · · · · · · · · ·				***************************************
Minimum	355	165	160	120	25	115
Mean	774	459	339	322	126	205
Maximum	1305	770	1040	925	435	410
Basal area (sq.f	t./acre)					
Minimum	107	29	50	87	12	58
Mean	174	87	90	131	38	92
Maximum	227	148	145	185	77	137
Cotal outside-ba	rk volume	(cu.ft./a	acre)			
Minimum	1700	475	1080	2305	295	1335
Mean	3839	1910	1975	3538	944	2466
Maximum	6235	3705	3885	5935	1625	4330
verage DBH (inc	hes)					
Minimum	4.5		4.0	6.0		6.3
Mean	6.4		7.1	8.9		9.2
Maximum	9.5		10.1	12.8		12.3
ge (years)						
	12		12	18		18
Minimum						
Minimum Mean	21		21	28		28

Discrepancies in the plot description (e.g., the means of a stand attribute after thinning and amount of thinning do not sum to the mean of that attribute before thinning as expected) are due to missing observations either before or after thinning.

Table 2. Distribution of all observations by site index (base age 25 years), age, basal area, and number of trees per acre.

Site Index (feet)	Age (years)	Basal Area (sq.ft. /acre)	≤ 300	Number 6 301- 500	of tree 501- 700	s per a 701- 900	ocre 901- 1100	> Total
50	20	50 100 150 200	3 1 —	2 13 2 —	1 1	6 1 7	2 - 2	5 14 9 3 —
	30	50 100 150 200	5 33 ——————————————————————————————————	2 11 11 24	2 2 - 4	2 1 3		7 44 15 3 6 9
	40	50 100 150	1 22 5 —————————————————————————————————					1 22 5
	50	100 150	$\frac{2}{1}$					$\frac{2}{\frac{1}{3}}$
60	10	50 100		1 - 1			$\frac{1}{1}$	1 1 2
	20	50 100 150 200	4 21 1 —————————————————————————————————	3 32 8 1 44	3 7 10	3 8 —	6 2 - 8	7 53 21 18 —

Table 2. Distribution of all observations by site index (base age 25 years), age, basal area, and number of trees per acre (continued).

Site		Basal Area		Number	of tree	s per a	ıcre		
Index	Age (years)	(sq.ft.	≤ 300	301 - 500	501- 700	701 - 900	901- 1100	> 1100	Total
60	30	50 100 150 200	6 88 19	11 20	2 1	1			6 99 41 2
			113	31	3	1			148
	40	100 150	23 20 43						23 20 43
	50	100 150 200	2 2 3 - 7						2 2 3 — 7
70	10	50 100 150	2 - 2	2 4 — 6	2 2 — 4	1 4 — 5	4	2 - 2	$ \begin{array}{r} 6 \\ 7 \\ 10 \\ \hline 23 \end{array} $
	20	100 150 200	7 1 — 8	11 6 ——————————————————————————————————	3 1 2 —	2 - 2			21 8 4
	30	100 150	1 3 - 4						$\frac{1}{3}$
то	TAL		276	140	28	29	15	2	490

attributes were predicted using regression techniques. The second stage involved determining the Weibull parameters so that the resulting diameter distribution would produce stand basal area and average dbh estimates identical to those predicted from regression equations in the first stage. By linking these two stages, the size-class distribution information produced is conditioned to provide aggregate values that are consistent with the predicted overall stand attributes.

Stand-Level Model

The stand-level model consisted of regression equations that predict (1) stand attributes (such as number of trees, basal area, minimum, and average diameters), and (2) density of a stand in the future (age A_2) based on stand information at present (age A_1). Also needed was a mean height equation that predicts total height corresponding to a given dbh. Table 3 shows the equations that form a whole stand model for thinned loblolly pine plantations.

Individual tree volume equations developed by Burkhart $\underline{\text{et}}$ $\underline{\text{al}}$. (1972b) and Burkhart's (1977) volume ratio model were employed for estimating merchantable volumes. The site index equation developed by Devan (1979) was used to predict the average height of the dominants and codominants (HD) from site index and stand age, or to estimate site index from HD and stand age.

Deriving Diameter Distribution. from Stand Attributes

The three-parameter Weibull pdf employed here to approximate diameter distribution is:

$$f(x) = (c/b)[(x-a)/b]^{c-1} \exp \{-[(x-a)/b]^c\}, x \ge a,$$

where b, c = positive scale and shape parameters, respectively,

- a = nonnegative location parameter,
- x = diameter random variable.

The location parameter was predicted from a regression equation. The scale and shape parameters were searched for such that the resulting Weibull distribution would produce stand basal area and arithmetic mean dbh estimates identical to those predicted from regression equations. In other words, b and c were solutions of the following system of two equations:

Table 3. Regression equations that form a whole stand model for thinned loblolly pine plantations.

Equation Number	Equation $\frac{a}{}$
1	$ln(B_2) = 5.40816 + 0.0032121 S - (A_1/A_2) [5.40816]$
	$+ 0.0032121 \text{ S} - \ln(B_1)$
	n = 207; $\overline{\ln(B_2)}$ = 4.7230; $s_{y.x}$ = 0.0860 R^2 = 99.34%; $R^2(B_2)$ = 80.47%
	_
2	$N_2 = [N_1^{-0.65808} + 0.0000075795 (A_2^{1.78019})]$ $1.780191/0.65808$
	$-A_1^{1.78019}$)] $-1/0.65808$
	$n = 207$; $\overline{N_2} = 253.02$; $s_{y.x} = 18.64$
	$R^2 = 97.07\%; R^2(N_2) = 97.07\%$
3	ln(B) = -4.39181 + 0.19054 /A + 1.34753 ln(HD) + 0.63902 ln(N)
	$n = 490; \overline{\ln(B)} = 4.7149; s_{y.x} = 0.1407$
	$R^2 = 75.48\%; R^2(B) = 77.01\%$
4	ln(N) = 7.79805 + 2.10495 /A - 1.89908 ln(HD) + 1.16744 ln(B)
	$n = 490; \overline{\ln(N)} = 5.6732; s_{y.x} = 0.1902$
	$R^2 = 87.19\%; R^2(N) = 85.78\%$
5	ln(H) = 0.46152 + 0.43275 /A + 0.93333 ln(HD) - 0.08583 ln(B)
	+ 0.07596 ln(N) - 2.15312 /D
	$n = 3559; \overline{ln(H)} = 4.0404; s_{y.x} = 0.0422$
	$R^2 = 96.76\%; R^2(H) = 97.62\%$

Table 3. Regression equations that form a whole stand model for thinned loblolly pine plantations (continued).

Equation Number Equation $6 \quad \ln(\text{Dmin}) = 1.10835 + 5.10755 / \text{A} + 0.50531 \ln(\text{HD}) \\ + 0.28544 \ln(\text{B}) - 0.57131 \ln(\text{N}) \\ \text{n} = 427; \quad \overline{\ln(\text{Dmin})} = 1.5253; \quad \text{s}_{\text{y.x}} = 0.2972 \\ \text{R}^2 = 46.84\%; \quad \text{R}^2(\text{Dmin}) = 51.02\%$ $7 \quad \ln(\text{Dq}-\overline{\text{D}}) = -9.05733 + 0.89274 \ln(\text{HD}) + 0.58151 \ln(\text{N}) \\ \text{n} = 489; \quad \overline{\ln(\text{Dq}-\overline{\text{D}})} = -2.1316; \quad \text{s}_{\text{y.x}} = 0.6206 \\ \text{R}^2 = 11.50\%; \quad \text{R}^2(\overline{\text{D}}) = 99.80\%$

 $\frac{a}{}$ Notation:

ln(x) = Natural logarithm of x,

 $R^{2}(x)$ = Percent variation of x explained by the model,

A = Stand age in years,

B = Basal area in square feet per acre,

D = Tree diameter at breast height (dbh) in inches,

 \overline{D} = Arithmetic mean dbh in inches,

Dmin = Minimum dbh in inches,

Dq = Quadratic mean dbh in inches,

H = Total height in feet of a tree having dbh D,

HD = Average height in feet of the dominants and codominants,

N = Number of surviving trees per acre,

S = Site index in feet (base age 25 years).

Subscript i denotes that the measurement is taken at time i.

$$\hat{\overline{D}} = \int_{a}^{\infty} x \ f(x) \ dx \tag{8}$$

$$\hat{B} = 0.005454 \text{ N} \int_{a}^{\infty} x^2 f(x) dx$$
 (9)

where

 $\hat{\overline{\mathbf{D}}}$ = predicted arithmetic mean dbh in inches,

 \hat{B} = predicted basal area in square feet per acre,

N = number of surviving trees per acre,

f(x) = Weibull pdf with parameters a, b, and c.

Equation (8) can be rewritten as

$$\hat{\bar{D}} = a + b \Gamma(1 + 1/c)$$
 (10)

or

$$b = (\hat{\bar{D}} - a) / \Gamma(1 + 1/c)$$
 (11)

where $\Gamma(\mathrm{x})$ = gamma function evaluated at x.

In most diameter distribution models, stand volume and basal area are often obtained by first computing these attributes for each dbh class and then summing over diameter classes of interest. Equation (9) can be approximated in a similar manner by replacing the integral sign with a summation sign:

$$B = 0.005454 \text{ N} \sum_{x_{i}=1}^{\infty} x_{i}^{2} f_{i}$$
 (12)

where

 x_i = midpoint of the ith dbh class,

 $f_{i} = F(x_{i}+0.5) - F(x_{i}-0.5) = proportion of trees in the ith dbh class,$

 $F(x) = 1 - \exp \{-[(x-a)/b]^{C}\}\ = Weibull cumulative distribution function with parameters a, b, and c.$

Starting with a guess for c, parameter b can be computed from (11) given a and c. All three parameters (a, b, and c) then specify a Weibull distribution. If equation (12) is not satisfied, a refined estimate for c will be computed and the procedures are repeated until both sides of equation (12) are almost equal. This method reduces the problem to that of solving one nonlinear equation (equation 12) whose unknown is the shape parameter c of the Weibull pdf.

RESULTS AND DISCUSSION

Program WTHIN

All of the techniques described earlier were incorporated into program WTHIN, which was written in standard FORTRAN. This program can generate stand and stock tables for different combinations of site, stand age, and density. It is also able to simulate a loblolly pine stand for a specified period during which thinning options are available at any point in time.

Prediction of the Present Stand

The inputs needed are:

- (1) age of the present stand,
- (2) site index (or average height of the current dominants and codominants),
- (3) two measures of density (total basal area and number of trees per acre).

If only one measure of density is available, the other can be estimated by employing the appropriate equation (3 or 4) of Table 3. Equations (6, 7) of Table 3 predict the minimum and arithmetic mean dbh of the stand. The Weibull location parameter a is computed from Dmin as follows:

$$a = FLOOR (Dmin-0.5) - 0.49$$
,

where FLOOR (x) = integer portion of x. This adjustment simply sets Dmin at the lower end of its 1-inch dbh class and then decreases it by 1 inch.

The Weibull parameters b and c are obtained by solving equation (12). As a result, number of trees and basal area per acre for each dbh class can be computed. The mean height equation (equation 5 of Table 3) predicts total height corresponding to the midpoint of each dbh class. Total volumes outside and inside bark can be obtained from the individual tree volume equations published by Burkhart et al. (1972b). Merchantable volumes can also be calculated using the volume ratio methods developed by Burkhart (1977) and Cao and Burkhart (1980).

Thinning

Inputs for the thinning option include age of the stand when thinning occurs and type of thinning. Thinning can be carried out by rows, from below, or a combination of both.

It is assumed that the diameter distribution does not change due to <u>row thinning</u>. Thus the number of trees, basal area, and volume per acre in each dbh class are reduced by the proportion of trees removed in thinning.

Thinning from below is defined here as removing all trees with dbh values less than a specified diameter. Input for this type of thinning can be either this diameter limit or a residual basal area. A combination of row and low thinning involves first a row thinning followed by a thinning from below.

Alternative thinning algorithms can be easily substituted for those included in this model if one has information on removal patterns for the operations of interest.

Projection

Basal area and number of trees per acre at some age in the future can be projected using equations (1) and (2) of Table 3 for thinned stands, or the following equations from Coile and Schumacher (1964) for unthinned loblolly pine plantations:

$$\log_{10}(N) = \log_{10}(N_0) + [2.1346 - 1.1103 \log_{10}(N_0) + 0.1384 \text{ (OF)}] \text{ A/100}$$

$$\log_{10}(B) = 1.4366 \log_{10}(S) - 0.7084 (10/A) + 0.4888 \log_{10}(N) + 0.0585 (OF) - 1.4436$$

where

A = age in years,

B = stand basal area in square feet per acre at age A,

N = number of surviving trees per acre at age A,

No = number of trees planted per acre,

OF = +1 if old-field origin, and -1 otherwise.

S = site index in feet (base age 25 years).

Procedures similar to those for predicting the present stand are then employed to produce stand and stock tables for the future stand.

<u>Diameter Distribution of a</u> <u>Previously Low-Thinned Stand</u>

Suppose that in a previous thinning from below, all trees having dbh below Dthin were cut. If the predicted Weibull location parameter (a) for the present stand is greater than or equal to Dthin, then the complete Weibull function is used to characterize the current diameter distribution. On the other hand, when a is less than Dthin, a left-truncated Weibull pdf is more appropriate where Dthin is the truncation point.

When the truncated Weibull is employed, equation (10) is replaced with:

$$\hat{\bar{D}} = a + \int_{\text{(Dthin-a)}}^{\infty} \frac{x(c/b)(x/b)^{c-1} \exp[-(x/b)^{c}]}{1 - F(Dthin)} dx$$

$$\hat{\bar{D}} = a + \frac{b}{1 - F(Dthin)} \int_{\left(\frac{Dthin-a}{b}\right)^{c}}^{\infty} y^{1/c} \exp(-y) dy$$

or

$$\hat{\overline{D}} = a + \frac{b}{1 - F(Dthin)} \left[(1 + 1/c) - \int_0^{\left(\frac{Dthin - a}{b}\right)^c} y^{1/c} \exp(-y) dy \right]$$
(13)

where
$$F(x) = 1 - \exp \{-[(x-a)/b]^c\}$$
.

The procedures for deriving the parameters of the truncated Weibull pdf are similar to those of the complete Weibull described earlier. The shape parameter c is solved from equation (12); for each estimated value of c, the scale parameter b is obtained from equation (13) (instead of from equation (11) as in the case of the complete Weibull pdf). The proportion of trees in the ith dbh class of the truncated distribution is given by:

$$f_i = \frac{F(i+0.5) - F(i-0.5)}{1 - F(Dthin)}$$

Effect of Thinning Regimes on Yield

In order to demonstrate the effect of thinning type and intensities on yield, different thinning options were applied to loblolly pine plantations on site index 60 soil. These hypothetical stands had 800 trees and 130 sq.ft. per acre of basal area at age 15, and would be harvested at age 30. Option D was the control where no thinning was applied. In the rest of the thinning options, the stands were thinned repeatedly at ages 15, 20, and 25 to a specified residual basal area. Residual basal areas were arbitrarily set at 80, 95, and 110 sq.ft. per acre for options A, B and C, respectively. Three types of thinning were considered for each residual density: (1) row thinning, (2) low thinning, and (3) a combination of row and low thinnings, where 25% of the basal area removed was first cut in a row thinning and then the remainder from a thinning from below. Option Bl, for example, means row thinning to 95 sq.ft./acre of residual basal area.

Yields of these stands under different regimes are presented in Table 4. Total cubic-foot volume production (amount removed in thinnings plus final harvest volume) did not differ much from row to low thinning for a given thinning level. Note that thinning level is to a specified residual basal area and that number of trees remaining therefore varies by thinning type. Stand average diameter, however, was lowest in row thinning, highest in low thinning, and somewhere between these two extremes in the combination of row and low thinnings, as expected. As found by other researchers (such as Feduccia and Mann 1976, Sullivan and Williston 1977), cubic-foot volume production increased with higher residual basal area. On the other hand, average dbh increased as the thinnings were more severe, which implies an increase in board-foot volume production.

Although only total cubic-foot volume is presented in Table 4, users can readily develop yield tables in other units (cords, board feet, pounds, etc.) and for any specified portion of the stand by substituting appropriate volume or weight equations and specifying desired threshold diameters in the model.

Comparison with Published Information on Thinning

Coile and Schumacher's (1964) Model

Program WTHIN was compared with the model for thinned loblolly pine plantations developed by Coile and Schumacher (1964); results

Total cubic-foot yield on a per acre basis of a loblolly pine plantation on site 60 land, with 800 trees and 130 square feet of basal area at age 15, by thinning option. Table 4.

nl mme :tion	rt.)	25	23 +	1.2		25	61	0(7.1	e]	25	23)5	67
Total Volume Production	(cu.1	222	4123	49		22,	3219	41(48.	t./acre	222	322	4105	787
Volume removed l	(cu.ft.) (cu.ft.)	856	572		/acre	844	604	555		= 80 sq.ft.	847	909	.558	
Total Volume ob	(inches) (cu.ft.) (cu. l area = 80 sq.ft./acre	1369	2071		80 sq.ft./acre	1381	1771	2097		basal area	1378	1770	2094	
thinning Average DBH	(inches)	5.3	7.4		sal area =	6.4	8.3	10,2		Residual b	6.3	8.1	6.6	
After Basal Area	ees (sq.it.) (Residual basal	80	80		Residual basal	80	80	80		I	80	80	80	
li iu	trees Resi	767	255		Resi	350	209	139		low thinning	367	221	149	
Total Volume ob	(inches) (cu.it.) Al: Row thinning	2225	2643	2860	thinning	2225	2375	2652	2868	and 75%	2225	2376	2652	2868
thinning Average DBH) (inches)	5.3	7.7	8.5	A2: Low	5.3	7.6	9,5	11.5	thinning	5.3	7.4	9,3	
re l		130	102	86	OPTION	130	108	102	86	25% row	130	108	102	98
Number	trees (sq.tt	800	326	242		800	335	202	134	OPTION A3:	800	351	212	143
Age (years)		15	25	30		15	20	25	30	OPTI	15	20	25	30

Total cubic-foot yield on a per acre basis of a loblolly pine plantation on site 60 land, with 800 trees and 130 square feet of basal area at age 15, by thinning option (continued). Table 4.

Total Volume Production	(cu.ft.)	2225	3290	4240	5078		225	3292	4226	940	cre	305	(77	293	232	5054
1 1	_ 1	2	c.	4	.∵		2	3	4	5	sd.ft./acre		7	rr)	4	Š
Volume	(cu.ft.)	590	622	572		/acre	592	596	553		= 95 sd	1.2	ナー・	601	554	
Total Volume ob	(inches) (cu.ft.) (cu. al area = 95 sq.ft./acre	1625	2078	2456		95 sq.ft./acre	1633	2104	2485		area	1631	1001	2098	2483	
After thinning Basal Average Area DBH	(inches)	5.3	6.3	7.2		al area =	6.2	7.9	9.6		Residual basal	0 4	• •	9./	9.2	
After Basal Area	(sq.ft.) (95	95	95		Residual basal	95	95	95		1) L	45	95	
Number	Si	585	423	323		Resi	454	274	188		w thinn	027		293	201	
g Total Volume ob	(cu.ft.) w thinning	2225	2700	3028	3294	Low thinning	2225	2700	3038	3305	and 75% low thinning	2225		6697	3037	3305
thinning Average DBH	(inche	5.3	6,3	7.2	Δ•1	B2:	5.3	7.1	0.6	10.6	thinning	۶.	, ,	٥./	8.6	10,3
Before Basal Area	trees (sq.ft.)	130	123	117	113	OPTION	130	123	117	113	25% row	130	133	1.23	117	113
Number	trees	800	550	398	304		800	430	261	180	OPTION B3:	800	277	440	279	192
Age (years)		15	20	25	30		1.5	20	25	30	OPTI(15) C	07	25	30

Total cubic-foot yield on a per acre basis of a loblolly pine plantation on site 60 land, with 800 trees and 130 square feet of basal area at age 15, by thinning option (continued). Table 4.

Total	Volume Production (cu.ft.)		2225 3355	4350 5226		2225 3350	4330 5185	sq.ft./acre	2225 3351 4335	5194
L. L	Volume Volume removed Productio (cu.ft.) (cu.ft.)	./acre	342 607	260	sq.ft./acre	340	535	= 110 sq.f	341 585 540	
	Total Volume ob (cu.ft.)	110 sq.ft./acre	1883 2406	2841	110 sq.ft	1885	2875	basal area	1884 2425 2869	
After thinning	Average DBH (inches)	al area =	5.3	7.0	al area =	5.9	0.6	Residual ba	5.9 7.3 8.6	
	Basal Area (sq.ft.)	Residual basal	110	110	Residual basal	110	110	1	110 110	
	Number of trees	1	67 <i>7</i> 504	394	1	564 357	246	low thinning	573 372 264	
	Total Volume ob (cu.ft.)	Row thinning	2225 3013	3401 3717	Low thinning	2225 3010	3410 3730	and 75%	2225 3010 3409	3728
thinning	Average DBH (inches)		5.3	7.0	C2:	5.3	8.0 0.0	thinning	5.3 6.7 8.2	9.6
Before	Number Basal of Area trees (sq.ft.)	OPTION CI:	130	132 128	OPTION	130	132	25% row	130 138 132	128
11		- Adam -	800 632	472 368		800 531	338	OPTION C3:	800 539 352	250
	Age (years)		15	25		15	25	OPTI	15 20 25	30

Total cubic-foot yield on a per acre basis of a loblolly pine plantation on site 60 land, with 800 trees and 130 square feet of basal area at age 15, by thinning option (continued). Table 4.

	Total Volume Volume removed Production (cu.ft.) (cu.ft.)		2225 5387	T THE PARTY OF THE
After thinning	Number Basal Average Total of Area DBH Volume ob trees (sq.ft.) (inches) (cu.ft.)			PRESENTE A PRESENTATION OF THE PROPERTY AND ASSESSMENT AND ASSESSMENT ASSESSM
Before thinning	Number Basal Average Total of Area DBH Volume ob trees (sq.ft.) (inches) (cu.ft.)	OPTION D: No thinning	800 130 5.3 2225 540 186 7.8 5387	
Transference of the Control of the C	Age (years)		15	

are presented in Table 5. Both row and low thinning options were tried, for the thinning in practice would likely be somewhere between these two cases. Care was taken such that cord volume removed in each thinning was identical to that specified by Coile and Schumacher. Examination of the residual stands at age 30 revealed that the number of surviving trees from Coile and Schumacher's model was between the predicted values from the two types of thinning of program WTHIN. Residual basal area, quadratic mean dbh, and volume from Coile and Schumacher's predictions were consistently higher than those from WTHIN.

Coile and Schumacher's predicted total volume production of thinned stands far exceeded that of unthinned counterparts. On the other hand, total volume predictions (i.e., volume removed in thinnings plus residual volume) of thinned stands at age 30 from program WTHIN were close to volumes of unthinned stands at age 30 from Coile and Schumacher's model. This agrees well with what other investigators have found, namely, that total cubic-foot volume production is generally little affected by thinning (Smith 1962, Andrulot et al. 1972, Goebel et al. 1974).

Yields Reported by Goebel et al. (1974)

Goebel et al. (1974) reported yields of 9 old-field loblolly pine stands; each had been thinned 4 to 5 times to a specified residual basal area per acre. Site indices were determined from curves developed by Goebel and Shipman (1964). Goebel and Warner (1969) recognized a significant site-age bias in these site index curves and revised their yield model using Clutter and Lenhart's (1968) polymorphic site index curves. Devan's (1979) site index equation was replaced with that of Clutter and Lenhart (1968) in program WTHIN when simulating the stands based on the guidelines set forth by Goebel et al. (1974). Data for total cubic-foot volumes reported by Goebel et al. (1974) were based on volume tables prepared by MacKinney and Chaiken (1939). Thus MacKinney and Chaiken's (1939) individual tree volume equation was used in this simulation.

The observed number of trees per acre and average dbh in each plot fell between values predicted from WTHIN using the row and low thinning options (Table 6). Comparison of total volume production in these 9 stands shows that the mean relative difference between observed and predicted yields (averages of yields from the row and low thinning options) is -2.52%.

Comparison of predicted yields of Coile and Schumacher (1964) and those from program WTHIN on a per acre basis for thinned loblolly pine plantations. Table 5.

Source	Site	Site a/ Number	Basal	Age	Amount of thinning	thinning	Residu	Residual stand at age 30	at age 30		Total
	Index (feet)	of trees at age 5	(sq.ft.) at age 5	thinned (years)	Basal area (sq.ft.)	Volume E/ (cords)	Quadratic mean DBH (inches)	Number of trees	Basal area (sq.ft.)	Volume (cords)	Volume Production (cords)
(38 <u>c</u> /	5.0	009	.	30	α,	94	, 61	976			
7))	;	2	9	2	13.3 £/	140	155	787	38.7
Row e/					58		9.6	172	76	19.6	29.6
Low -					19		10.8	114	72	18.7	28.7
C&S	50	800	11.4	20	82	12	13.4	146	142	30,3	42.3
. ;					ļ		(7.3)	(448)	(130)	(29.1)	(29,1)
KOM.					72		9.8	184	74	18.9	30.8
S. O					11		10.8	106	68	17.5	29.5
C&S	09	009	12.9	17,22	45,36	7,7	13.6	168	170	7.87	47 7
					•		(8.8)	(365)	(153)	(6 67)	(0 6%)
Row					38,29		9.7	202	104	31.2	45.0
Low					43,30		12.1	122	65	29.4	43.3
C&S	09	800	14.8	17,22	58,47	6,6	14.6	159	185	47.1	65.1
							(8.3)	(448)	(691)	(47.2)	(47.2)
Row					51,38		9.2	207	96	28.8	46.7
Low					59,38		12.3	105	87	26.3	44.3
C&S	7.0	009	16.1	15,20,25	37,37,39	6,8,10	15.1	158	196	9.09	84.6
							(8.8)	(365)	(191)	(63.4)	(63.4)
NOW.					31,31,33		10.4	178	104	35.9	0.09
3					36,31,33		13.6	66	100	34.3	58.0
C&S	70	800	18.5	15,20,25	43,47,51	7,8,13	14.7	189	222	68.2	98.2
ã					6		(6.3)	(448)	(211)	(70.0)	(70.0)
Total					37,39,43		7,6,	189	97	33.2	63.1
:					40,40,43		13./	85	28.7	0	o o

a/ Site index at base age 25 years.

Cord volume to a 4-inch top, converted from d/ Row cubic-foot volume outside bark to a 4-inch e/ Low top, using ratios from Burkhart et al. (1972b).

 $\frac{c}{d}$ Coile and Schumacher (1964). $\frac{d}{d}$ Row thinning, program WTHIN. $\frac{c}{f}$ Low thinning, program WTHIN. $\frac{f}{f}$ Numbers in parentheses are for unthinned stands.

Comparison of observed yields of Goebel et al. (1974) and predicted yields from program WTHIN on a per acre basis for thinned loblolly pine plantations. Table 6.

			Before	first thinning	Supuru			After p	erlodic	After periodic thinnings		-	r F	Volume	E
Source	Site Index (feet)	Number Age of (years) trees	F to	Basal Area (sq.ft.)	Average DBH (inches)	Total Volume 1b (cu.ft.)	Age (years)		Basal Area (sq.ft.)	Number Basal Average Residual of Area DBH Volume trees (sq.ft.) (inches) (cu.ft.);	Residual Volume (cu.ft.)	Age when thinned (years)	Basai area limit (sq.ft.)	removed Total In Volume thinning Producti (cu.ft.) (cu.ft.)	Yotal Volume Production (cu.ft.)
Observed Row <u>c</u> / Low <u>d</u> /	51 a/ 60 b/ 60 b/	13	790	121	5.2 5.2	1476 1491 1491	34	140 141 68	25 25 27	9.9 9.8 14.2	1870 1967 1971	13,21,	75	2325 2644 2547	4195 4611 4519
Observed Row Low	51 60 60	13	800	116	5.0 5.0	2116 1422 1422	34	160 181 89	84 85 85	9.8 9.2 13.2	2075 2224 2240	13,21, 27,34	85	2188 2456 2345	4263 4680 4585
Observed Row Low	51 60 60	13	780	129	5.3	1579 1600 1600	34	160 194 101	94 95 95	10.4 9.4 13.1	2349 2485 2502	13,21,27,34	56	2189 2488 2374	4538 4973 4876
Observed Row Low	51 60 60	13	1016	124	4.4 6.5 6.5	1409 1494 1494	34	132 184 80	80 80 80	30.5 8.8 13.5	2065 2089 2110	13,18,20, 25,34	80	2261 2536 2419	4326 4625 4529
Observed Row Row	51 60 60		1004	122	4.4 4.6 6.5	1350 1469 1469	34	148 224 100	88 90 90	10.5 8.4 12.8	2436 2345 2376	13,18,20, 25,34	06	2431 2388 2258	4867 4733 4635
Observed Row Low	51 60 60	13	924	105	4.4	1133 1254 1254	34	176 281 141	103 100 100	10.4	2934 2595 2647	13,18,20, 25,34	100	2707 2034 1896	5641 4629 4542
Observed Row Low	55 61	17	1180	196	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2784 3164 3164	30	252 241 104	85 85	7.8 7.9 12.2	2107 2106 2142	17,20,	85	2401 3034 2894	4508 5140 5036
Observed Row Low	55 61 61	17	1220	187	5.4	3054 3000 3000	30	280 370 181	111 110 110	8.6 7.2 10.5	2854 2704 2771	17,20, 24,30	110	2192 2446 2280	5046 5151 5051
Observed Row Low	5.2	17	1212	180	5.0 5.0 5.0	2884 2880 2880	30	372 502 273	129 135 135	8.0 8.0 4.0	3232 3302 3391	17,20,	135	1896 1842 1658	5128 5144 5048

 $\frac{a}{b}'$ Site index (base age 25 years) from Goebel and Shipman (1964). $\frac{b}{b}'$ Site index (base age 25 years) from Clutter and Lenhart (1968).

c/ Row thinning, program WTHIN. d/ Low thinning, program WTHIN.

Possible Modifications and Refinements

In this study, a growth and yield model for thinned loblolly pine plantations was developed in which the parameters of the Weibull function that characterized the diameter distribution were searched for to insure that the resulting stand basal area and average dbh estimates were identical to those predicted from stand variables using regression techniques. Although the model gave logical results that agreed well with past work on thinning, there is still room for improvement.

Two specific areas for further investigation are:

- (1) Various methods for deriving a dbh distribution from stand attributes for thinned stands need to be more fully evaluated.
- (2) More realistic removal patterns for thinning from below should be developed. One possibility is to establish stochastic models in which trees in each dbh class are assigned probabilities of being removed, and are cut or left in each thinning operation depending on values of the random numbers generated.

LITERATURE CITED

- Andrulot, E.R., L.P. Blackwell, and P.Y. Burns. 1972. Effects of thinning on yield of loblolly pine in central Louisiana. Div. Res. Coll. Life Sci., Bull. 6, La. Tech. Univ., 145p.
- Bailey, R.L. and T.R. Dell. 1973. Quantifying diameter distributions with the Weibull function. For. Sci. 19:97-104.
- Bailey, R.L., N.C. Abernathy, and E.P. Jones, Jr. 1981. Diameter distributions models for repeatedly thinned slash pine plantations. <u>In:</u> Proceedings of the first biennial Southern Silvicultural Research Conference (J.P. Barnett, Ed.). U.S. For. Serv. Tech. Rep. SO-34, p.115-126.
- Bassett, J.R. 1966. Periodic cubic growth in natural loblolly pine stands near Crossett, Arkansas. U.S. For. Serv. Res. Note SO-37, 4p.
- Beck, D.E. and L. Della-Bianca. 1972. Growth and yield of thinned yellow-poplar. U.S. For. Serv. Res. Pap. SE-101, 20p.
- Bennett, F.A. 1970. Variable-density yield tables for managed stands of natural slash pine. U.S. For. Serv. Res. Note SE-141, 7p.
- Bennett, F.A. and J.L. Clutter. 1968. Multiple-product yield estimates for unthinned slash pine plantations -- pulpwood, sawtimber, gum. U.S. For. Serv. Res. Pap. SE-35, 21p.
- Bliss, C.I. and K.A. Reinker. 1964. A log-normal approach to diameter distributions in even-aged stands. For. Sci. 10:350-360.
- Brender, E.V. and J.L. Clutter. 1970. Yield of even-aged, natural stands of loblolly pine. Ga. For. Res. Counc. Rep. No. 23, 7p.
- Bruner, M.H. and N.B. Goebel. 1968. Loblolly pine in the upper Piedmont. For. Farmer 28(3):9,18.
- Buckman, R.E. 1962. Growth and yield of red pine in Minnesota. U.S.D.A. Tech. Bull. 1272, 50p.
- Burkhart, H.E. 1977. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 1:7-9.

- Burkhart, H.E. and M.R. Strub. 1974. A model for simulation of planted loblolly pine stands. <u>In:</u> Growth models for tree and stand simulation. (J. Fries, Ed.). Royal College of Forestry, Stockholm, Sweden, p.128-135.
- Burkhart, H.E., R.C. Parker, and R.G. Oderwald. 1972a. Yields for natural stands of loblolly pine. Div. of For. and Wildl. Res., Va. Polytech. Inst. and State Univ., FWS-2-72, 63p.
- Burkhart, H.E., R.C. Parker, M.R. Strub, and R.G. Oderwald. 1972b. Yields of old-field loblolly pine plantations. Div. of For. and Wildl. Res., Va. Polytech. Inst. and State Univ., FWS-3-72, 51p.
- Burton, J.D. 1980. Growth and yield in managed natural stands of loblolly and shortleaf pine in the West Gulf Coastal Plain. U.S. For. Serv. Res. Pap. SO-159, 23p.
- Cao, Q.V. and H.E. Burkhart. 1980. Cubic-foot volume of loblolly pine to any height limit. South. J. Appl. For. 4:166-168.
- Clutter, J.L. 1963. Compatible growth and yield models for loblolly pine. For. Sci. 9:354-371.
- Clutter, J.L. and D.M. Belcher. 1978. Yield of site-prepared slash pine plantations in the lower coastal plain of Georgia and Florida. In: Growth models for long term forecasting of timber yields (J. Fries, H.E. Burkhart, and T.A. Max, Ed.). School of For. and Wildl. Res., Va. Polytech. Inst. and State Univ., FWS-1-78, p.53-70.
- Clutter, J.L. and F.A. Bennett. 1965. Diameter distribution in old-field slash pine plantations. Ga. For. Res. Counc. Rep. No. 13, 9p.
- Clutter, J.L. and J.D. Lenhart. 1968. Site index curves for old-field loblolly pine plantations in the Georgia Piedmont. Ga. For. Res. Counc. Rep. No. 22 Series 1, 4p.
- Coile, T.S. and F.X. Schumacher. 1964. Soil-site relations, stand structure, and yields of slash and loblolly pine plantations in the Southern United States. T.S. Coile, Inc., Durham, NC, 296p.
- Daniels, R.F. and H.E. Burkhart. 1975. Simulation of individual tree growth and stand development in managed loblolly pine plantations. Div. of For. and Wildl. Res., Va. Polytech. Inst. and State Univ., FWS-5-75, 69p.

- Daniels, R.F., H.E. Burkhart, G.D. Spittle, and G.L. Somers. 1979. Methods for modeling individual tree growth and stand development in seeded loblolly pine stands. School of For. and Wildl. Res., Va. Polytech. Inst. and State Univ., FWS-1-79, 50p.
- Dell, T.R., D.P. Feduccia, T.E. Campbell, W.F. Mann, Jr., and B.H. Polmer. 1979. Yields of unthinned slash pine plantations on cutover sites in the West Gulf region. U.S. For. Serv. Res. Pap. SO-147, 84p.
- Devan, J.S. 1979. Base-age invariant polymorphic site index curves for loblolly pine. M.S. Thesis, Va. Polytech. Inst. and State Univ., 83p.
- Feduccia, D.P. and W.F. Mann, Jr. 1976. Growth following initial thinning of loblolly pine planted on a cutover site at five spacings. U.S. For. Serv. Res. Pap. SO-120, 8p.
- Feduccia, D.P., T.R. Dell, W.F. Mann, Jr., T.E. Campbell, and B.H. Polmer. 1979. Yields of unthinned loblolly pine plantations on cutover sites in the West Gulf region. U.S. For. Serv. Res. Pap. SO-148, 88p.
- Frazier, J.R. 1981. Compatible whole-stand and diameter distribution models for loblolly pine. Ph.D. Thesis, Va. Polytech. Inst. and State Univ., 125p.
- Goebel, N.B. and R.D. Shipman. 1964. Volume yields of loblolly pine plantations for a variety of sites in the South Carolina Piedmont. S.C. Agric. Exp. Sta. For. Res. Series No. 13, 15p.
- Goebel, N.B. and J.R. Warner. 1969. Volume yields of loblolly pine plantations for a variety of sites in the South Carolina Piedmont. S.C. Agric. Exp. Sta. For. Res. Series No. 13, 15p.
- Goebel, N.B., J.R. Warner, and D.H. Van Lear. 1974. Periodic thinnings in loblolly pine stands: growth, yield, and economic analyses. Clemson Univ., For. Res. Series No. 28, 11p.
- Hyink, D.M. 1980. Diameter distribution approaches to growth and yield modelling. <u>In</u>: Forecasting Forest Stand Dynamics (K.M. Brown and F.R. Clarke, Ed.). School of Forestry, Lakehead Univ., Thunderbay, Ontario, p.138-163.
- Lenhart, J.D. 1972. Cubic-foot yields for unthinned old-field loblolly pine plantations in the Interior West Gulf Coastal Plain. Texas For. Pap. No. 14. School of Forestry, Stephen F. Austin State Univ., 46p.

- Lenhart, J.D. and J.L. Clutter. 1971. Cubic-foot yield tables for old-field loblolly pine plantations in the Georgia Piedmont. Ga. For. Res. Counc. Rep. No. 22, Series 3, 12p.
- MacKinney, A.L. and L.E. Chaiken. 1939. Volume, yield and growth of loblolly pine in the Mid-Atlantic Coastal Plain Region. U.S. For. Serv. Appalachian For. Exp. Sta. Tech. Note 33, 30p.
- Matney, T.G. and A.D. Sullivan. 1982. Compatible stand and stock tables for thinned and unthinned loblolly pine stands. For. Sci. 28:161-171.
- Meyer, W.H. 1928. Rates of growth of immature Douglas fir as shown by periodic remeasurements on permanent plots. J. Agric. Res. 36:193-215.
- Meyer, W.H. 1930. Diameter distribution series in evenaged forest stands. Yale Univ. School of For. Bull. 28, 105p.
- Murphy, P.A. and H.S. Sternitzke. 1979. Growth and yield estimation for loblolly pine in the West Gulf. U.S. For. Serv. Res. Pap. S0-154, 8p.
- Murphy, P.A. and R.C. Beltz. 1981. Growth and yield of shortleaf pine in the West Gulf region. U.S. For. Serv. Res. Pap. S0-169, 15p.
- Nelson, T.C. 1964. Diameter distribution and growth of loblolly pine. For. Sci. 10:105-115.
- Osborne, J.G. and F.X. Schumacher. 1935. The construction of normal-yield and stand tables for even-aged timber stands. J. Agric. Res. 51:547-564.
- Schnur, G.L. 1934. Diameter distributions for old-field loblolly pine stands in Maryland. J. Agric. Res. 49:731-743.
- Schumacher, F.X. 1928. Yield, stand and volume tables for red fir in California. Univ. of California. Coll. Agric. Bull. 456, 29p.
- Schumacher, F.X. 1930. Yield, stand and volume tables for Douglas fir in California. Univ. of California. Coll. Agric. Bull. 491, 41p.
- Schumacher, F.X. and T.S. Coile. 1960. Growth and yield of natural stands of the southern pines. T.S. Coile, Inc., Durham, NC, 115p.

- Shepard, R.K. 1974. Growth of thinned and unthinned loblolly pine stands. La. Agric. 17(4):10-12.
- Smalley, G.W. and R.L. Bailey. 1974a. Yield tables and stand structure for loblolly pine plantations in Tennessee, Alabama, and Georgia highlands. U.S. For. Serv. Pap. S0-96, 81p.
- Smalley, G.W. and R.L. Bailey. 1974b. Yield tables and stand structure for shortleaf pine plantations in Tennessee, Alabama, and Georgia highlands. U.S. For. Serv. Pap. S0-97, 57p.
- Smith, D.M. 1962. The practice of silviculture. John Wiley and Sons, Inc., New York, 578p.
- Strub, M.R. and H.E. Burkhart. 1975. A class-interval-free method for obtaining expected yields from diameter distribuitons. For. Sci.21:67-69.
- Sullivan, A.D. and J.L. Clutter. 1972. A simultaneous growth and yield model for loblolly pine. For. Sci. 18:76-86.
- Sullivan, A.D. and H.L. Williston. 1977. Growth and yield of thinned loblolly pine plantations in loessial soil areas. Miss. Agric. and For. Exp. Sta. Tech. Bull. 86, 16p.

APPENDICES

Appendix		Page			
1	A numerical example.				
2	Input variable formats and description for program WTHIN.				
	2a. Subprogram identification card (first card).	36			
	2b. Subprogram INPUT1.	37			
	2c. Subprogram INPUT2.	40			
3	Input example for program WTHIN.				
	3a. Simulate a stand through time.	41			
	3b. Stand and stock tables for specified combinations of site index, age, and density.	42			
4	Generalized flowchart of program WTHIN.	43			
5	Source listing for program WTHIN.	45			

Appendix 1. A numerical example.

The following example is chosen to illustrate the techniques employed in program WTHIN. Consider a loblolly pine plantation on soil of site index 60 feet (base age 25 years), with 600 trees and 150 sq.ft. of basal area per acre at age 20. The stand is thinned to 100 sq.ft. per acre at age 20; the thinning method is a combination of 25% row thinning and 75% low thinning (i.e. a row thinning removes 25% of the total basal area scheduled to be thinned, and then a thinning from below removes the remaining 75%). No minimum diameter for removal in the low thinning is specified in this example. The stand is then left to grow until it is harvested at age 40. The card input needed by program WTHIN to simulate this particular stand is presented in Appendix 3a. Figures Al to A4 show the outputs of this simulation from program WTHIN. The computational steps (on a per acre basis) are outlined as follows.

Step 1: Yield prediction of the stand before thinning.

Stand variables: Site index = 60 feet, A = 20 years, N = 600 trees, B = 150 sq.ft. (variable names are defined in Table 3).

From Devan's (1979) site index equation, average height of the dominants and codominants at age 20 is 49.55 feet. Substituting the values into the appropriate stand variables in equations (6, 7) of Table 3 gives: Dmin = 3.04 inches and \overline{D} = 6.61 inches.

The Weibull location parameter is adjusted from Dmin as follows:

$$a = FLOOR (Dmin-0.5) - 0.49 = 1.51,$$

where FLOOR(x) = integer portion of x.

The remaining parameters defining a Weibull distribution which produces a total basal area of 150 sq.ft./acre and an average dbh of 6.61 inches are found to be

$$b = 5.6274$$
 and $c = 4.0385$.

Per acre number of trees, basal area, and volume for each dbh class can be computed. For example, number of trees in the 6-inch class is $600 ext{ } F(6.5) - F(5.5) = 143.3 ext{ } trees, where F(x) ext{ } is the Weibull cdf evaluated at x. Basal area in the 6-inch class:}$

143.3
$$(0.005454)$$
 $(6)^2 = 28.1 \text{ sq.ft.}$

Average height of a tree with a 6-inch dbh in this plantation is calculated from equation (5) of Table 3 to be 45.7 feet. Burkhart et al.'s (1972b) tree volume equation is applied on 143.3 trees of dbh 6 inches and total height 45.7 feet, resulting in a volume of 597.4 cu.ft. outside bark in the 6-inch dbh class. Summing volume

25% ROW, 75% LOW THINNING DOWN TO 100 SQFT/ACRE. HARVEST AGE = 40.

INPUTS	PREDICTED		
APL DAY CON COM MAN AND			
SITE = 60.00	HD = 49.55		
AGE = 20.00	AVERAGE DBH = 6.61		
NUMBER OF TREES = 600.00	MINIMUM DBH = 3.04		
BASAL AREA = 150,00			

DBH CLASS	NUMBER OF TREES	AVERAGE HEIGHT	BASAL AREA	TOTAL VOLUME O.B.	TOTAL VOLUME I.B.	VOLUME O.B. TO 4.IN	VOLUME I.B. TO 4.IN
2 3 4 5 6 7 8 9 10 11	0.5 8.4 36.0 87.5 143.3 158.6 111.3 44.7 9.0	22.3 31.9 38.6 42.7 48.1 50.6 52.8 53.7	0.0 0.4 3.1 11.9 28.1 42.4 38.8 19.7 4.9	0.3 8.5 63.6 246.7 5923.2 865.6 448.2 112.9	0.2 5.5 44.9 182.6 453.3 710.6 672.3 350.2 88.6 9.3	0.0 0.0 165.8 477.9 801.6 786.2 418.3 107.3	0.0 0.0 0.8 118.8 3558.9 604.8 324.4 63.7
12	600.0	24.7	0.0 150.0	0.4 3278.7	0.3 2517.8	0.4 2768.8	0.3 2105.4

AVERAGE DBH = 6.61 CORD VOLUME TO 4.IN = 31.43

BASED ON 1-INCH DBH CLASSES

WEIBULL PARAMETERS

A = 1.5100 B = 5.6274 C = 4.0385

CONVERGENCE ATTAINED

Figure Al. Example output from program WTHIN -- Step 1: Yield prediction of the stand before thinning.

25% ROW, 75% LOW THINNING DOWN TO 100 SQFT/ACRE. HARVEST AGE = 40.

ROW THINNING AT AGE 20.

8.33% OF TREES IN ALL DIAMETER CLASSES ARE CUT

BEFORE ROW THINNING

SITE = 60.00 AGE = 20.00 NUMBER OF TREES = 600.00 BASAL AREA = 150.00 AVERAGE DBH = 6.61

AFTER ROW THINNING

DBH CLASS	NUMBER OF TREES	AVERAGE HE1GHT	BASAL AREA	TOTAL VOLUME O.B.	TOTAL VOLUME I.B.	VOLUME O.B. TO 4.IN	VOLUME I.B. TO 4.IN
2	0.5	22.3	0.0	0.3	0.1	0.0	0.0
3	7.7	31.9	0.4	7.8	5.0	0.0	0.0
Ц	33.0	38.2	2.9	58.3	41.1	0.0	0.0
5	80.2	42.6	10.9	226.1	167.4	151.9	108.9
6	131.4	45.7	25.8	547.6	415.5	438.1	326.0
7	145.4	48.1	38.8	846.3	651.4	734.8	558.1
8	102.0	50.0	35.6	793.4	616.3	720.7	554.4
9	40.9	51.6	18.1	410.8	321.0	383.4	297.4
10	8.2	52.8	4.5	103.5	81.2	98.3	76.7
11	0.7	53.8	0.5	10.9	8.6	10.5	8.2
12	0.0	54.7	0.0	0.4	0.3	0.4	0.3
			***				***
	550.0		137.5	3005.4	2308.0	2538.1	1930.0

SITE = 60.00 AGE = 20.00 NUMBER OF TREES = 550.00 BASAL AREA = 137.50 AVERAGE DBH = 6.61 BASED ON 1-INCH DBH CLASSES

AMOUNT REMOVED IN ROW THINNING

NUMBER OF TREES = 50.00

BASAL AREA = 12.50

TOTAL CU.FT. VOLUME 0.B. = 273.22

CU.FT. VOLUME 0.B. TO 4.IN = 230.73

CORD VOLUME TO 4.IN = 2.62

Figure A2. Example output from program WTHIN -- Step 2: Row thinning at age 20.

25% ROW, 75% LOW THINNING DOWN TO 100 SQFT/ACRE. HARVEST AGE = 40.

LOW THINNING AT AGE 20.

THIN TO 100.00 SQ.FT. RESIDUAL BASAL AREA

BEFORE LOW THINNING

SITE = 60.00 AGE = 20.00 NUMBER OF TREES = 550.00 BASAL AREA = 137.50 AVERAGE DBH = 6.61

AFTER LOW THINNING

DBH CLASS	NUMBER OF TREES	AVERAGE HEIGHT	BASAL AREA	TOTAL VOLUME O.B.	TOTAL VOLUME 1.B.	VOLUME O.B. TO 4.IN	VOLUME I.B. TO 4.1N
6	12.7	45.7	2.5	53.1	40.3	42.4	21 6
7	145.4	48.1	38.8	846.3	651.4	734.8	31.6 558.1
8	102.0	50.0	35.6	793.4	616.3	720.7	554.4
ğ	40.9	51.6	18.1	410.8	321.0	383.4	297.4
10	8.2	52.8	4.5	103.5	81.2	98.3	76.7
11	0.7	53.8	0.5	10.9	8.6	10.5	
12	0.0	54.7	ŏ.ŏ	0.4	0.3	0.4	8.2
		27.7	0.0	0.4	0.3	0.4	0.3
	310.0		100.0	2218.4	1719.0	1990.5	1526.7

SITE = 60.00 AGE = 20.00 NUMBER OF TREES = 309.97 BASAL AREA = 100.00 AVERAGE DBH = 7.64

7.64 BASED ON 1-INCH DBH CLASSES

AMOUNT REMOVED IN LOW THINNING

NUMBER OF TREES = 240.03

BASAL AREA = 37.50

TOTAL CU.FT. VOLUME O.B. = 787.06

CU.FT. VOLUME O.B. TO 4.IN = 547.57

CORD VOLUME TO 4.IN = 6.46

Figure A3. Example output from program WTHIN -- Step 3: Low thinning at age 20.

25% ROW, 75% LOW THINNING DOWN TO 100 SQFT/ACRE. HARVEST AGE = 40.

INPUTS	PREDICTED

SITE = 60.00 AGE = 40.00 NUMBER OF TREES = 245.26	HD = 81.14 AVERAGE DBH = 10.95 MINIMUM DBH = 5.87
BASAL AREA = 164.52	

THIS STAND WAS PREVIOUSLY THINNED FROM BELOW ALL TREES UNDER 5.5 INCHES IN DBH WERE CUT

DBH CLASS	NUMBER OF TREES	AVERAGE HEIGHT	BASAL AREA	TOTAL VOLUME 0.B.	TOTAL VOLUME 1.B.	VOLUME O.B. TO 4.IN	VOLUME I.B. TO 4.IN
6	1.3	66.5	0.2	7.4	5.7	5.9	4.5
7	5.7	69.9	1.5	47.0	36.5	40.8	31.3
8	15.1	72.7	5.3	168.6	132.0	153.1	118.7
8 9	29.6	74.9	13.1	426.9	335.6	398.4	310.9
10	45.0	76.7	24.5	816.5	643.8	775.6	608.1
11	53.3	78.2	35.1	1188.0	938.8	1142.1	898.3
12	47.6	79.5	37.4	1281.1	1013.9	1241.9	979.1
13	30.5	80.6	28.1	975.8	773.2	951.8	751.8
14	13.2	81.6	14.1	492.4	390.6	482.5	381.7
15	3.5	82.4	4.3	152.3	120.9	149.8	118.6
16	0.5	83.2	0.7	26.4	21.0	26.0	20.6
17	0.0	83.8	0.1	2.3	1.8	2.3	1.8
	245.3		164.5	5584.7	4413.8	5370.3	4225.5

AVERAGE DBH = 10.95 BASED ON 1-INCH DBH CLASSES CORD VOLUME TO 4.IN = 57.51

WEIBULL PARAMETERS

A = 4.5100 B = 7.0872 C = 4.1068

CONVERGENCE ATTAINED

Figure A4. Example output from program WTHIN -- Step 4: Project to age 40.

estimates over dbh classes gives a stand volume value of 3279 cu.ft. per acre.

Step 2: Row thinning at age 20.

In this example, 25% of the basal area removed is due to row thinning. Total basal area removed in two thinnings: 150-100=50 sq.ft. Residual basal area after row thinning:

$$150 - 0.25 (50) = 137.5 \text{ sq.ft.}$$

Let Q be the ratio of basal area after row thinning and basal area before thinning, $Q=137.5\ /\ 150=0.9167$. The stand and stock table after row thinning is constructed by multiplying the residual ratio Q by the entries in the stand and stock table before row thinning.

Number of trees in the 6-inch class: 0.9167 (143.3) = 131.4 trees. Basal area in the 6-inch class: 0.9167 (28.1) = 25.76 sq.ft. Volume in the 6-inch class: 0.9167 (597.4) = 547.6 cu.ft.

Step 3: Low thinning at age 20.

Basal area removed in low thinning: 0.75 (50) = 37.5 sq.ft. The diameter limit (Dthin) is searched for by summing basal area in each dbh class, starting from the lowest class, until the total is closest to but not greater than 37.5 sq.ft. Basal area of cut trees having dbh's of 5.5 inches and below:

$$0.4 + 2.9 + 10.9 = 14.2$$
 sq.ft.

Basal area of trees in the 6-inch class that are removed in low thinning: 37.5 - 14.2 = 23.3 sq.ft., which corresponds to:

$$131.4 (23.3) / 25.76 = 118.7$$
trees.

Residual number of trees in the 6-inch class: 131.4 - 118.7 = 12.7 trees/acre. Trees in the 7-inch class and above are left in this low thinning.

Step 4: Project to age 40.

Stand attributes at age 40 are predicted from those at age 20 after thinning. The procedures for constructing the stand and stock table are similar to those described earlier in Step 1, except that a Weibull distribution left-truncated at a diameter of 5.5 inches is used in this case.

Appendix 2a. Input variable formats and description for program WTHIN -- Subprogram identification card (first card).

Column	Format	Variable	Description
1	11	IPROG	= 1 = Call INPUT1: project a stand through time.
			= 2 = Call INPUT2: stand and stock table for specified combinations of age, site, and density.

Appendix 2b. Input variable formats and descriptions for program WTHIN -- Subprogram INPUT1.

				
Card Type	Column	Format	Variabl	e Description
1				STAND DESCRIPTION CARD
	1-3	F3.0	SII	Site index in feet (base age 25 years).
	4-6	F3.0	AGE1	Age in years of the present stand.
	7-10	F4.0	XN1	Number of trees per acre at AGE1.
	11-16	F6.2	BA1	Basal area in square feet per acre at AGE1.
				(Either XN1 or BAl has to be specified).
	17-18	I2	INDEX	<pre>= 1 = XN1 and BA1 are both inputs. = 2 = Only XN1 is input for density. = 3 = Only BA1 is input for density.</pre>
	19-23	F5.2	DTHIN1	<pre>= 0 = This stand has never been thinned from below. 0 = All trees having dbh below DTHIN1 were cut in a previous low thinning.</pre>
	24-26	F3.0	AGE2	Age at the next input or decision period.
	27-28	12	NDEC	Number of decision cards, each card describes management routine (thinning or not) at a specified age.
	29-30	12	IOPT	<pre>= 0 = No title card for this stand. = 1 = Title card immediately follows</pre>
	31-32	12	MORE	<pre>= 0 = No other stand. Stop when this stand is finished. = 1 = Another stand follows.</pre>

Appendix 2b. Input variable formats and descriptions for program WTHIN -- Subprogram INPUT1 (continued).

Card Type	Column	Format	Variable	e Description
2				DECISION CARD
	1-3	F3.0	AGE1	Current stand age, equal to AGE2 specified in the previous card.
	4-6	F3.0	AGE2	Age at the next input or decision period (harvest age if this is the last decision card of this stand).
	7-8	12	ITHIN	<pre>= 1 = No thinning at AGE1. = 2 = Row thinning at AGE1. = 3 = Low thinning at AGE1. = 4 = Row thinning followed by low thinning at AGE1.</pre>
	9-10	12	JOPT	<pre>(Needed only when IROW=2 or ILOW=2) = 1 = BTHIN is specified. = 2 = BRESR or BRES is specified.</pre>
	11-12	12	IROW	<pre>(Needed only when ITHIN=2 or 4). = 1 = Specify residual ratio (Q). = 2 = Residual ratio not specified.</pre>
	13-17	F5.2	Q	<pre>= Residual ratio (after / before thinning), when ITHIN=2 and IROW=1. = Ratio of basal area removed in row thinning and total basal area removed, when ITHIN=4 and IROW=2.</pre>
	18-23	F6.2	BRESR	(Needed only when JOPT=2 and IROW=2) Residual basal area per acre after row thinning.
	24-29	F6.2	BTHINR	(Needed only when JOPT=1 and IROW=2) Basal area per acre removed in row thinning.

Appendix 2b. Input variable formats and descriptions for program WTHIN -- Subprogram INPUT1 (continued).

Card Type	Column	Format	Variabl	e Description
2	30-31	12	ILOW	<pre>(Needed only when ITHIN=3 or 4) = 1 = All trees below a specified</pre>
	32-36	F5.2	DTHIN	(Needed only when ILOW=1) All trees having dbh below DTHIN are cut.
	37-42	F6.2	BRES	(Needed only when JOPT=2 and ILOW=2) Residual basal area per acre after low thinning.
	43-48	F6.2	BTHIN	(Needed only when JOPT=1 and ILOW=2) Basal area per acre removed in low thinning.

Appendix 2c. Input variable formats and description for program WTHIN -- Subprogram INPUT2.

Column	Format	Variable	Des	cription				
1-4	I4	ISB	Site index:	Begin				
5-8	I4	ISE		End				
9-12	I4	ISI		Increment				
13-16	14	IAB	Stand age:	Begin				
17-20	14	IAE		End				
21-24	14	IAI		Increment				
25-28	I4	INB	Trees/acre:	Begin				
29-32	I4	INE		End				
33-36	I4	INI		Increment				
37-40	I4	IBB	Basal area:	Begin				
41-44	I4	IBE		End				
45-48	I4	IBI		Increment				
49-52	14	INDEX	area (II = 2 = Only IN	of trees (IN) and basal B) per acre are both inputs. is input for density. is input for density.				
53-56	14	IOPT	= 0 = No title = 1 = Title ca this can	ard immediately follows				

Appendix 3a. Input example for program WTHIN -- simulate a stand through time.

Stand 1:

Site index = 60 feet (base age 25 years).

Density at age 5 = 600 trees/acre.

Thinning: Age = 17. Amount = 38 sq.ft./acre. Type = ROW.

Age = 22. Amount = 29 sq.ft./acre. Type = ROW.

Harvest age = 30 years.

Title: COILE AND SCHUMACHER (1964)

Stand 2:

Site index = 60 feet (base age 25 years).

Density at age 20 = 600 trees and 150 sq.ft./acre.

Thinning: Age = 20. Thin to 100 sq.ft./acre. Type = 25% ROW, 75% LOW.

Harvest age = 40 years.

Title: 25% ROW, 75% LOW THINNING

Card input:

1 1234567890....5....0....5....0 Column: 60 5 600 2 17 2 1 1 COILE AND SCHUMACHER (1964) 17 22 2 1 2 38.00 22 30 2 1 2 29.00 60 20 600150.00 1 20 1 1 0 25% ROW, 75% LOW THINNING 20 40 4 2 2 0.25100.00 2 100.00 Appendix 3b. Input example for program WTHIN -- stand and stock tables for specified combinations of site index, age, and density.

Combinations:

Site index = 50 feet (base age 25 years).

Stand age = 10, 15, 20, 25, 30 years.

Number of trees = 200, 400, 600, 800 trees/acre.

Basal area = 50, 100, 150, 200 sq.ft./acre.

No title wanted.

Card input:

Column:	12345		-					•	5	•			_		~
	2 50	50	10	10	30	5	200	800	200	50	200	50	1	0	

Appendix 4. Generalized flowchart of program WTHIN.

Appendix 4. Generalized flowchart of program WTHIN (continued).

Appendix 5. Source listing of program WTHIN.

```
00000000000000
                                                                                             WTH00010
                                                                                             WTH00020
                                                                                             WTH00030
                                                                                             WTH00040
            Ħ
                PROGRAM WITHIN PRODUCES STAND AND STOCK TABLES
                                                                                             WTH00050
                FOR THINNED LOBLOLLY PINE PLANTATIONS.
                                                                                             WTH00060
            #
                                                                                             WTH00070
                            DEVELOPED BY QUANG V. CAO
                                                                            #
                                                                                             WTH00080
                            VPI & SU. AUGUST 1, 1981
                                                                                             WTH00090
                                                                                             WTH00100
            *********
                                                                                             WTH00110
                                                                                             WTH00120
                                                                                             WTH00130
        CALL ERRSET(208,256,-1,1)
CALL ERRSET(207,256,-1,1)
CALL ERRSET(209,256,-1,1)
CALL ERRSET(262,256,-1,1)
CALL ERRSET(263,256,-1,1)
CALL ERRSET(263,256,-1,1)
                                                                                             WTH00140
                                                                                             WTH00150
                                                                                             WTH00160
                                                                                             WTH00170
                                                                                             WTH00180
        READ(5,500) IPROG
FORMAT(11)
                                                                                             WTH00190
500
                                                                                             WTH00200
        IF(IPROG.EQ.1) CALL INPUT1
IF(IPROG.EQ.2) CALL INPUT2
                                                                                             WTH00210
                                                                                             WTH00220
        RETURN
                                                                                             WTH00230
        END
                                                                                             WTH00240
        SUBROUTINE INPUT1
                                                                                             WTH00250
                                                                                             WTH00260
                                                                                             WTH00270
            WTH00280
                                                                                             WTH00290
                SUBROUTINE INPUT1 READS THE NECESSARY INPUTS
                                                                                             WTH00300
               FOR SUBROUTINE GROW.
                                                                            #
                                                                                             WTH00310
                                                                                             WTH00320
            **************
                                                                                            WTH00330
                                                                                            WTH00340
                                                                                            WTH00350
       IMPLICIT REAL*8 (A-H,O-Z)

COMMON /ONE/ SI,AGE,XN,BA,HD,DMIN,DMED,DMAX,DBAR,IMAX,IMIN

COMMON /TWO/ SII,AGE1,XN1,BA1,DTHIN1,AGE2,Q,DTHIN,BRES,BRESR,QTHINWTH00380

NDEX,ITHIN,ILOW,IROW

WTH00390
       COMMON /THREE/ ITITLE(20), AINV, XNLOG, BLOG, HDLOG, TVOB1, TVOB41
, CVOB41, IOPT, JJJ
COMMON /FOUR/ A, B, BMIN, C, CONST, CINV, GAMMA
DATA IRIANK/'
                                                                                            WTH00400
                                                                                            WTH00410
                                                                                            WTH00420
       DATA IBLANK/
                                                                                            WTH00430
C
                                                                                            WTH00440
C-
           READ STAND DESCRIPTION CARD.
                                                                                            WTH00450
С
                                                                                            WTH00460
   1
       READ(5,500,END=999) SI1,AGE1,XN1,BA1,INDEX,DTHIN1.AGE2.NDEC.IOPT
                                                                                            WTH00470
       , MORE
FORMAT(2F3.0, F4.0, F6.2, 12, F5.2, F3.0, 312)
                                                                                            WTH00480
500
                                                                                            WTH00490
       ITHIN=1
                                                                                            WTH00500
       JJJ=0
                                                                                            WTH00510
```

Appendix 5. Source listing of program WTHIN (continued).

```
WTH00520
                      READ TITLE CARD IF ANY.
                                                                                                                                                                              WTH00530
                                                                                                                                                                              WTH00540
               DO 2 II=1,20
                                                                                                                                                                              WTH00550
                                                                                                                                                                             WTH00560
              ITITLE(II)=IBLANK
       2
                                                                                                                                                                              WTH00570
               IF(10PT.EQ. 1) READ(5,501) (ITITLE(11), 11=1,20)
                                                                                                                                                                              WTH00580
501
              FORMAT(20A4)
                                                                                                                                                                              WTH00590
              CALL GROW
                                                                                                                                                                              WTH00600
C
                                                                                                                                                                              WTH00610
                     READ DECISION CARDS.
C.
                                                                                                                                                                              WTH00620
                                                                                                                                                                              WTH00630
               IF(MORE.EQ.1.AND.NDEC.EQ.0) GO TO 1
               IF(MORE.NE.1.AND.NDEC.EQ.0) RETURN
                                                                                                                                                                              WTH00640
                                                                                                                                                                              WTH00650
              DO 3 I=1, NDEC
              READ(5,502) AGE2, ITHIN, JOPT, IROW, Q, BRESR, BTHINR, ILOW, DTHIN, BRES
                                                                                                                                                                              WTH00660
                                                                                                                                                                              WTH00670
                                              ,BTHIN
                                                                                                                                                                              WTH00680
              FORMAT(3X, F3.0, 212, 2(12, F5.2, 2F6.2))
502
                                                                                                                                                                              WTH00690
               IF(ITHIN.NE.1) JJJ=1
                                                                                                                                                                              WTH00700
              AGE1=AGE
                                                                                                                                                                              WTH00710
              NX=INX
                                                                                                                                                                              WTH00720
              BA1=BA
               IF(JOPT.EQ.1.AND.IROW.EQ.2) BRESR=BA1-BTHINR
                                                                                                                                                                              WTH00730
                                                                                                                                                                              WTH00740
               IF(JOPT.EQ. 1. AND. ILOW. EQ. 2) BRES=BA1-BTHIN
               IF(JOPT.EQ.1.AND.ILOW.EQ.2.AND.ITHIN.EQ.4) BRES=BRESR-BTHIN
                                                                                                                                                                              WTH00750
                                                                                                                                                                              WTH00760
               INDEX=1
                                                                                                                                                                              WTH00770
              CALL GROW
       3
                                                                                                                                                                              WTH00780
               IF(MORE, EQ. 1) GO TO 1
                                                                                                                                                                              WTH00790
999
              RETURN
                                                                                                                                                                              WTH00800
                                                                                                                                                                              WTH00810
               SUBROUTINE INPUT2
                                                                                                                                                                              WTH00820
С
                                                                                                                                                                              WTH00830
00000000
                      *************************
                                                                                                                                                                              WTH00840
                                                                                                                                                                              WTH00850
                             SUBROUTINE INPUT2 READS THE NECESSARY INPUTS
                                                                                                                                                                              WTH00860
                                                                                                                                                                              WTH00870
                      #
                             FOR SUBROUTINE YIELD.
                                                                                                                                                                              WTH00880
                      *******************
                                                                                                                                                                              WTH00890
                                                                                                                                                                              WTH00900
                                                                                                                                                                              WTH00910
              COMMON / FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA

COMMON / FOUR/ B,BMIN,C,CONST,CINV,GAMMA

COMMON / F
                                                                                                                                                                              WTH00920
              READ(5,500, END=999) ISB, ISE, ISI, IAB, IAE, IAI, INB, INE, INI, IBB
                                                                                                                                                                               WTH01000
              , IBE, IBI, INDEX, IOPT
                                                                                                                                                                               WTH01010
                                                                                                                                                                               WTH01020
500
                                                                                                                                                                               WTH01030
               DO 2 | | =1,20
                                                                                                                                                                               WTH01040
               ITITLE(II)=IBLANK
       2
                                                                                                                                                                               WTH01050
               IF(IOPT.EQ.1) READ(5,501) (ITITLE(II), II=1,20)
                                                                                                                                                                               WTH01060
501
               FORMAT(20A4)
```

Appendix 5. Source listing of program WTHIN (continued).

С		WTH01070
C	DO LOOPS. CHECK INDEX FOR INPUTS FOR STAND DENSITY.	WTH01080
С		WTH01090
	DO 40 IS=ISB, ISE, ISI	WTH01100
	SI=DFLOAT(IS)	WTH01110
	DO 30 IA=IAB,IAE,IAI	WTH01120
	AGE=DFLOAT(IA)	WTH01130
	A!NV=1.DO/AGE	WTH01140
	CALL HEIGHT	WTH01150
	AHDI=AINV/HD	WTH01160
	GO TO (13,11,12), INDEX	WTH01170.
11	IBB=100	WTH01180
	IBE=IBB	WTH01190
	IBI=50 GO TO 13	WTH01200
12	The state of the s	WTH01210
! 2	NB=100 NE= NB	WTH01220
	INI=50	WTH01230
13	DO 20 IN=INB, INE, INI	WTH01240
1.3	GO TO (21,22,23), INDEX	WTH01250
21	XN=DFLOAT(IN)	WTH01260
٠. ١	XNLOG=DLOG(XN)	WTH01270
	GO TO 23	WTH01280
22	XN=DFLOAT(IN)	WTH01290 WTH01300
	XNLOG=DLOG(XN)	WTH01310
	BLOG=-4.39180687D0 + 0.19054366D0*AINV	WTH01310
	: + 1.34753473D0*HDLOG + 0.63902092D0*XNLOG	WTH01330
	BA=DEXP(BLOG)	WTH01340
23	DO 10 IB=IBB, IBE, IBI	WTH01350
	GO TO (31,33,32), INDEX	WTH01360
31	BA=DFLOAT(IB)	WTH01370
	BLOG=DLOG(BA)	WTH01380
	GO TO 33	WTH01390
32	BA=DFLOAT(IB)	WTH01400
	BLOG=DLOG(BA)	WTH01410
	XNLOG=7.79805237D0 + 2.10495039D0*AINV	WTH01420
	: - 1.89908311D0*HDLOG + 1.16743646D0*BLOG	WTH01430
	XN=DEXP(XNLOG)	WTH01440
33	CONTINUE	WTH01450
C	2011/2 202 2111/202 202	WTH01460
C	- SOLVE FOR DIAMETER CDF.	WTH01470
С	CALL VIELD	WTH01480
10	CALL YIELD	WTH01490
10 20	CONTINUE	WTH01500
30	CONTINUE CONTINUE	WTH01510
40	CONTINUE	WTH01520
40	GO TO 1	WTH01530
999	RETURN	WTH01540
	END	WTH01550
	The state of the s	WTH01560

Appendix 5. Source listing of program WTHIN (continued).

```
WTH01570
       SUBROUTINE GROW
                                                                                       WTH01580
                                                                                       WTH01590
000000000000
           ************************************
                                                                                       WTH01600
                                                                                       WTH01610
              SUBROUTINE GROW PRODUCES A STAND AND STOCK
                                                                                       WTH01620
              TABLE AT AGE1. THE STAND IS THEN SUBJECT TO THINNING (OR NO THINNING), AND THEN PROJECTED
                                                                                       WTH01630
                                                                                       WTH01640
              TO AGE2.
                                                                                       WTH01650
                                                                                       WTH01660
           WTH01670
                                                                                       WTH01680
       IMPLICIT REAL*8 (A-H,0-Z)
COMMON /ONE/ SI,AGE,XN,BA,HD,DMIN,DMED,DMAX,DBAR,IMAX,IMIN WTHO1710
COMMON /TWO/ SI1,AGE1,XN1,BA1,DTHIN1,AGE2,Q,DTHIN,BRES,BRESR,QTHINWTH01720
,INDEX,ITHIN,ILOW,IROW WTHO1730
WTHO1740
WTHO1750
                                                                                       WTH01690
      COMMON /THREE/ ITITLE(20),AINV,XNLOG,BLOG,HDLOG,TVOB1,TVOB41; ,CVOB41,IOPT,JJJ
COMMON /FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA
                                                                                       WTH01750
                                                                                       WTH01760
       DATA B1/0.02273D0/, B2/-0.011103D0/
IF(AGE1.EQ.AGE.AND.XN1.EQ.XN.AND.BA1.EQ.BA) GO TO 5
                                                                                       WTH01770
                                                                                       WTH01780
       IDTHIN=DTHIN1+0.500
                                                                                       WTH01790
       DTHIN1=DFLOAT(IDTHIN)-0.5D0
                                                                                       WTH01800
                                                                                       WTH01810
       SI=SI1
       AGE=AGE1
                                                                                       WTH01820
       AINV=1.DO/AGE
                                                                                       WTH01830
       CALL HEIGHT
                                                                                       WTH01840
       GO TO (1,2,3), INDEX
                                                                                       WTH01850
C
                                                                                       WTH01860
           INDEX = 1 = BOTH XN1 AND BA1 ARE INPUTS FOR STAND DENSITY.
                                                                                       WTH01870
C.
                                                                                       WTH01880
C
   1
      XNLOG=DLOG(XN1)
                                                                                       WTH01890
       BLOG=DLOG(BA1)
                                                                                       WTH01900
       GO TO 4
                                                                                       WTH01910
                                                                                       WTH01920
С
C-
           INDEX = 2 = ONLY XN1 IS INPUT FOR STAND DENSITY.
                                                                                       WTH01930
                                                                                       WTH01940
   2
      XNLOG=DLOG(XN1)
                                                                                       WTH01950
       IF(JJJ.EQ.O) BLOG=DLOG(10.DO)*(1.4366DO*DLOG10(SI)-7.084DO*AINV
                                                                                       WTH01960
           +0.4888D0*DLOG10(XN1)-1.3851D0)
                                                                                       WTH01970
       IF(JJJ.EQ.1) BLOG=-4.39180687D0 + 0.19054366D0*AINV
                                                                                       WTH01980
          + 1.34753473D0*HDLOG + 0.63902092D0*XNLOG
                                                                                       WTH01990
       BA1=DEXP(BLOG)
                                                                                       WTH02000
       GO TO 4
                                                                                       WTH02010
                                                                                       WTH02020
C--
           INDEX = 3 = ONLY BA1 IS INPUT FOR STAND DENSITY.
                                                                                       WTH02030
Ċ
                                                                                       WTH02040
   3
      BLOG=DLOG(BA1)
                                                                                       WTH02050
       IF(JJJ.EQ.0) XNLOG=DLOG(10.D0)*(1.4366D0*DLOG10(SI)-7.084D0*AINV
                                                                                       WTH02060
       -DLOG10(BA1)-1.3851D0)/(-0.4888D0)
HF(JJJ.EQ.1) XNLOG=7.79805237D0 + 2.10495039D0#AINV
                                                                                       WTH02070
                                                                                       WTH02080
            1.89908311D0*HDLOG + 1.16743646D0*BLOG
                                                                                       WTH02090
       XN1=DEXP(XNLOG)
                                                                                       WTH02100
```

Appendix 5. Source listing of program WTHIN (continued).

```
WTH02110
           SOLVE FOR DIAMETER CDF.
C----
                                                                                   WTH02120
C
                                                                                   WTH02130
    4
       BA=BA1
                                                                                   WTH02140
       XN=XN1
                                                                                   WTH02150
       CALL YIELD
                                                                                   WTH02160
С
                                                                                   WTH02170
          THINNING AT AGE1.
C----
                                                                                   WTH02180
C
                                                                                   WTH02190
      CALL THIN
                                                                                   WTH02200
       IF(AGE.EQ.AGE2) RETURN
                                                                                   WTH02210
С
                                                                                   WTH02220
           PROJECT TO AGE2.
C----
                                                                                   WTH02230
C
                                                                                   WTH02240
                                                                                   WTH02250
       AGE=AGE2
                                                                                   WTH02260
       AINV=1.D0/AGE2
                                                                                   WTH02270
       CALL HEIGHT
                                                                                   WTH02280
       C1=5.40815546D0 + 0.321208D-2*SI
                                                                                   WTH02290
       XNPLOG=DLOG10(XN1)
                                                                                   WTH02300
       XNPLOG=(XNPLOG - B1*AGE1)/(1.D0 + B2*AGE1)
                                                                                   WTH02310
      | IF(JJJ.EQ.0) XNLOG=DLOG(10.D0)*(XNPLOG + AGE*

$ (B1 + B2*XNPLOG))
| IF(JJJ.EQ.1) XNLOG=-DLOG(DEXP(-0.658083D0*XNLOG)+0.75795D-5

$ *(AGE2**1.78018705D0-AGE1**1.78018705D0))/0.658083D0
                                                                                   WTH02320
                                                                                   WTH02330
                                                                                   WTH02340
                                                                                   WTH02350
       XN=DEXP(XNLOG)
                                                                                   WTH02360
       IF(JJJ.ÈQ.O) BLOG=DLOG(10.D0)*(1.4366D0*DLOG10(S1)-7.084D0
                                                                                   WTH02370
      $ #AINV + 0.4888D0*DLOG10(XN) -1.3851D0)
IF(JJJ.EQ.1) BLOG=C1 + (BLOG-C1)*AGE1/AGE2
                                                                                   WTH02380
                                                                                   WTH02390
       BA=DEXP(BLOG)
SOLVE FOR DIAMETER CDF.
                                                                                   WTH02400
C----
                                                                                   WTH02410
                                                                                   WTH02420
       CALL YIELD
                                                                                   WTH02430
       RETURN
                                                                                   WTH02440
       END
                                                                                   WTH02450
       SUBROUTINE YIELD
                                                                                   WTH02460
00000000000
                                                                                   WTH02470
                                                                                   WTH02480
          WTH02490
                                                                                   WTH02500
              SUBROUTINE YIELD PRODUCES A STAND AND STOCK
                                                                                   WTH02510
          *
              TABLE FOR A SPECIFIED COMBINATION OF AGE,
                                                                                   WTH02520
              SITE, AND DENSITY.
                                                                                   WTH02530
                                                                                   WTH02540
          ******
                                                                                   WTH02550
                                                                                   WTH02560
WTH02570
      CALL MODEL
CALL DIST
CALL OUTPUT(1)
                                                                                   WTH02580
                                                                                   WTH02590
                                                                                   WTH02600
       RETURN
                                                                                   WTH02610
       END
                                                                                   WTH02620
```

Appendix 5. Source listing of program WTHIN (continued).

```
SUBROUTINE HEIGHT
                                                                                               ₩TH02630
                                                                                               WTH02640
                                                                                               WTH02650
00000000000
            WTH02660
                                                                                               WTH02670
                SUBROUTINE HEIGHT COMPUTES HEIGHT OF THE
                                                                                               WTH02680
                DOMINANTS AND CODOMINANTS OF A STAND, GIVEN SITE INDEX AND AGE.
            #
                                                                                               WTH02690
            44
                                                                                               WTH02700
                        FROM JIM DEVAN'S THESIS (1979).
                                                                              *
                                                                                               WTH02710
                                                                                               WTH02720
            ***
                                                                                               WTH02730
                                                                                               WTH02740
                                                                                               WTH02750
       IMPLICIT REAL*8 (A-H,O-Z)
COMMON /ONE/ SI,AGE,XN,BA,HD,DMIN,DMED,DMAX,DBAR,IMAX,IMIN
COMMON /THREE/ ITITLE(20),AINV,XNLOG,BLOG,HDLOG,TVOB1,TVOB41
                                                                                               WTH02760
                                                                                               WTH02770
                                                                                               WTH02780
       CV0B41, IOPT, JJJ

DATA X0/0.04D0/, XL/0.2D0/, A/8.96178D0/,
B1/-5.27794D0/, B2/19.90047D0/, B3/-58.76122D0/
                                                                                               WTH02790
                                                                                               WTH02800
                                                                                               WTH02810
        X=AINV
                                                                                               WTH02820
        Z=DEXP(A*(X-X0))
                                                                                               WTH02830
        X0Z=X0*Z
                                                                                               WTH02840
        YO=DLOG(SI)
                                                                                               WTH02850
        HDLOG=YO*Z'+B1*(Z-1.DO) + B2*(XOZ-X) + B3*(XOZ*XO-X*X)
                                                                                               WTH02860
        HD=DEXP(HDLOG)
                                                                                               WTH02870
                                                                                               WTH02880
        RETURN
                                                                                               WTH02890
        END
        SUBROUTINE MODEL
                                                                                               WTH02900
                                                                                               WTH02910
00000000000
                                                                                               WTH02920
            ********************************
                                                                                               WTH02930
                                                                                               WTH02940
                SUBROUTINE MODEL PREDICTS FROM THE STAND
                                                                                               WTH02950
               CHARATERISTICS MINIMUM AND AVERAGE DIAMETERS.
                                                                                               WTH02960
                                                                                               WTH02970
            *************
                                                                                               WTH02980
                                                                                               WTH02990
                                                                                               WTH03000
       IMPLICIT REAL*8 (A-H,O-Y)
COMMON /ONE/ SI,AGE,XN,BA,HD,DMIN,DMED,DMAX,DBAR,IMAX,IMIN
                                                                                               WTH03010
                                                                                               WTH03020
       COMMON / THREE / ITILE (20), AINV, XNLOG, BLOG, HDLOG, TVOB1, TVOB41

COMMON / THREE / ITILE (20), AINV, XNLOG, BLOG, HDLOG, TVOB1, TVOB41

CVOB41, IOPT, JJJ

DQ=(BA/(0.545415D-2*XN))**0.5D0

DMIN=DEXP(1.10834919D0 + 5.10754613D0*AINV + 0.50530582*HDLOG

+ 0.28543547D0*BLOG - 0.57131133D0*XNLOG)

DBAR=DQ - DEXP(-9.05733308D0 + 0.89273788D0*HDLOG
                                                                                               WTH03030
                                                                                               WTH03040
                                                                                               WTH03050
                                                                                               WTH03060
                                                                                               WTH03070
                                                                                               WTH03080
                  + 0.58151144*XNLOG)
                                                                                               WTH03090
       RETURN
                                                                                               WTH03100
                                                                                               WTH03110
        END
```

Appendix 5. Source listing of program WTHIN (continued).

```
SUBROUTINE DIST
                                                                               WTH03120
00000000
                                                                               WTH03130
                                                                               WTH03140
          WTH03150
                                                                              WTH03160
          #
             SUBROUTINE DIST SOLVES FOR WEIBULL PARAMETERS
                                                                              WTH03170
              FOR DBH, GIVEN BA, N. MINIMUM AND AVERAGE DBH.
                                                                              WTH03180
                                                                              WTH03190
          *************************
                                                                              WTH03200
C
                                                                              WTH03210
                                                                              WTH03220
       IMPLICIT REAL*8 (A-H, O-Y)
                                                                              WTH03230
       COMMON /ONE/ SI, AGE, XN, BA, HD, DMIN, DMED, DMAX, DBAR, IMAX, IMIN
                                                                              WTH03240
       COMMON /THREE/ ITITLE(20), AINV, XNLOG, BLOG, HDLOG, TVOB1, TVOB41, CVOB41, IOPT, JJJ

COMMON /FOUR/ A, B, BMIN, C, CONST, CINV, GAMMA
                                                                              WTH03250
                                                                              WTH03260
                                                                              WTH03270
       EXTERNAL FON
                                                                              WTH03280
       DATA TOL/0.005/
                                                                              WTH03290
C
                                                                              WTH03300
C.
          INITIALIZE VARIABLES.
                                                                              WTH03310
C
                                                                              WTH03320
       CONST=-DLOG(0.5D0/XN)
                                                                              WTH03330
       I=DMIN-0.500
                                                                              WTH03340
       A=1-0.49D0
                                                                              WTH03350
       IF(A.LT.0.D0) A=0.D0
                                                                              WTH03360
       W1=-0.8D0
                                                                              WTH03370
       IMIN=0.5D0+A
                                                                              WTH03380
       IF(IMIN.LE.O) IMIN=1
                                                                              WTH03390
C
                                                                              WTH03400
          SOLVE EQUATION: FCN(C) = 0, USING THE SECANT METHOD.
C-
                                                                              WTH03410
C
                                                                              WTH03420
       CALL SECAN1(FCN, TOL, W1, ITER, IER)
                                                                              WTH03430
       C=10.D0*(1.D0+DERF(W1))
                                                                              WTH03440
      RETURN
                                                                              WTH03450
      END
                                                                              WTH03460
      SUBROUTINE SECAN1(F, ERROR, SOL, ITER, IER)
                                                                              WTH03470
С
                                                                              WTH03480
C
                                                                              WTH03490
000000000000000000000
          ***********
                                                                              WTH03500
                                                                              WTH03510
                            SECANT METHOD
                                                                              WTH03520
                                                                              WTH03530
             FIND A ROOT OF A NONLINEAR EQUATON F(X) = 0.
                                                                              WTH03540
                                                                              WTH03550
             INPUTS :
                           F = FUNCTION.
                                                                              WTH03560
                       ERROR = PROCEDURE IS STOPPED WHEN
                                                                              WTH03570
                                |F(X)| < ERROR.
                                                                              WTH03580
                         SOL = A GUESS OF THE SOLUTION TO
                                                                쌁
                                                                              WTH03590
                                F(X) = 0.
                                                                              WTH03600
          #
                                                                ₩
                                                                              WTH03610
            OUTPUTS: SOL = SOLUTION TO F(X) = 0.
ITER = NUMBER OF ITERATIONS.
IER = 0 = A ROOT IS FOUND.
= 1 = NO ROOT IS FOUND AFTER
                                                                Ħ
                                                                              WTH03620
                                                                #
                                                                              WTH03630
                                                                *
                                                                              WTH03640
          ₩
                                                                              WTH03650
         *
                                   50 ITERATIONS.
                                                                #
                                                                              WTH03660
                                                                              WTH03670
          WTH03680
                                                                              WTH03690
                                                                              WTH03700
      IMPLICIT REAL*8 (A-H,O-Z)
COMMON /FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA
                                                                              WTH03710
                                                                              WTH03720
```

Appendix 5. Source listing of program WTHIN (continued).

```
WTH03730
Č-
         INITIALIZATION.
                                                                            WTH03740
                                                                            WTH03750
      IER=0
                                                                            WTH03760
      ITER=0
                                                                            WTH03770
      X0=SOL
                                                                            WTH03780
      F0=F(X0)
                                                                            WTH03790
      B0=B
                                                                            WTH03800
      X1=X0+0.5D0
                                                                            WTH03810
      F1=F(X1)
                                                                            WTH03820
      AFMIN=DABS(F1)
                                                                            WTH03830
      XMIN=X1
                                                                            WTH03840
      BMIN=B
                                                                            WTH03850
      IF(AFMIN.LT.DABS(FO)) GO TO 1
                                                                            WTH03860
                                                                            WTH03870
      C1=X0
      C2=F0
                                                                            WTH03880
                                                                            WTH03890
      X0=X1
                                                                            WTH03900
      F0=F1
                                                                            WTH03910
      X1=C1
      F1=C2
                                                                            WTH03920
                                                                            WTH03930
      AFMIN=DABS(F1)
                                                                            WTH03940
      XMIN=X1
      BMIN=B0
                                                                            WTH03950
                                                                            WTH03960
C-
         START THE ITERATIVE PROCEDURE.
                                                                            WTH03970
                                                                            WTH03980
C
   1
      ITER=ITER+1
                                                                            WTH03990
      SOL=(X0*F1-X1*F0)/(F1-F0)
                                                                            WTH04000
      IF(DABS(SOL).GT.5.DO) GO TO 3
                                                                            WTH04010
                                                                            WTH04020
      F2=F(SOL)
      AF2=DABS(F2)
                                                                            WTH04030
      IF(AF2.GE.AFMIN) GO TO 2
                                                                            WTH04040
      AFMIN=AF2
                                                                            WTH04050
                                                                            WTH04060
      XMIN=SOL
                                                                            WTH04070
      BM I N=B
С
                                                                            WTH04080
                                                                            WTH04090
C-
         CHECK CONVERGENCE.
C
                                                                            WTH04100
      IF(AF2.LE.ERROR) RETURN
                                                                            WTH04110
   2
                                                                            WTH04120
      IF(ITER.GE.50) GO TO 3
                                                                            WTH04130
С
                                                                            WTH04140
C-
         REINITIALIZE VARIABLES.
                                                                            WTH04150
C
      X0=X1
                                                                            WTH04160
      F0=F1
                                                                            WTH04170
                                                                            WTH04180
      X1=SOL
                                                                            WTH04190
      F1=F2
      GO TO 1
                                                                            WTH04200
                                                                            WTH04210
C
         NO SOLUTION AFTER 50 ITERATIONS.
                                                                            WTH04220
C-
                                                                            WTH04230
                                                                            WTH04240
      1ER=1
   3
      SOL=XMIN
                                                                            WTH04250
                                                                            WTH04260
      B-BMIN
      RETURN
                                                                            WTH04270
                                                                            WTH04280
      END
```

Appendix 5. Source listing of program WTHIN (continued).

```
DOUBLE PRECISION FUNCTION FCM(W1)
                                                                                       WTH04290
                                                                                       WTH04300
00000000000
                                                                                       WTH04310
            ********************************
                                                                                       WTH04320
                                                                                      WTH04330
               FUNCTION FCN IS CALLED BY SUBROUTINE SECAN1 TO EVALUATE THE LEFT-HAND SIDE OF EQUATION:
           *
                                                                                       WTH04340
                                                                       #
                                                                                      WTH04350
                                  FCN(C) = 0.
                                                                       并
                                                                                      WTH04360
                                                                                      WTH04370
           ************
                                                                                      WTH04380
                                                                                      WTH04390
                                                                                       WTH04400
        IMPLICIT REAL*8 (A-H,O-Y)
                                                                                      WTH04410
       COMMON /ONE/ SI,AGE,XN,BA,HD,DMIN,DMED,DMAX,DBAR,IMAX,IMIN WTH04410
COMMON /TWO/ SI1,AGE1,XN1,BA1,DTHIN1,AGE2,Q,DTHIN,BRES,BRESR,QTHINWTH04430
,INDEX,ITHIN,ILOW,IROW WTH04440
COMMON /FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA WTH04450
С
                                                                                      WTH04460
C-
           INITIALIZATION.
                                                                                      WTH04470
С
                                                                                      WTH04480
       C=10.D0*(1.D0+DERF(W1))
                                                                                      WTH04490
       CINV=1.DO/C
                                                                                      WTH04500
       GAMMA=DGAMMA(1.D0+CINV)
                                                                                      WTH04510
       B=(DBAR-A)/GAMMA
                                                                                      WTH04520
        IMAX=1.5DO+A+B*CONST**(CINV)
                                                                                      WTH04530
       FCN=0.D0
                                                                                      WTH04540
        IF(A.LT.DTHIN1) GO TO 2
                                                                                      WTH04550
       F1=0 D0
                                                                                      WTH04560
                                                                                      WTH04570
C----
           COMPUTE FCN.
                                                                                      WTH04580
                                                                                      WTH04590
       DO 1 I=IMIN, IMAX
                                                                                      WTH04600
       XI=DFLOAT(I)
                                                                                      WTH04610
       F2=CDF(X1+0.5D0)
                                                                                      WTH04620
       F=F2-F1
                                                                                      WTH04630
       IF(F.LT.0.D0) F=0.D0
                                                                                      WTH04640
       ## IF(1.EQ.IMAX) F=1.D0-F1
                                                                                      WTH04650
                                                                                      WTH04660
       FCN=FCN+XI*XI*F
                                                                                      WTH04670
       FCN=FCN*0.545415D-2*XN-BA
                                                                                      WTH04680
       RETURN
                                                                                      WTH04690
                                                                                      WTH04700
C----
          WHEN THE LOCATION PARAMETER (A) IS LOWER THAN DTHIN1.
                                                                                      WTH04710
                                                                                      WTH04720
       CALL FINDB
                                                                                      WTH04730
       F1=CDF(DTH(N1)
                                                                                      WTH04740
       FRES=1.D0-F1
                                                                                      WTH04750
       IMIN1=DTHIN1+0.51D0
                                                                                      WTH04760
       DO 3 I=IMINT, IMAX
                                                                                      WTH04770
       XI=DFLOAT(1)
                                                                                      WTH04780
       F2=CDF(XI+0.5D0)
F=(F2-F1)/FRES
                                                                                      WTH04790
                                                                                      WTH04800
       IF(F.LT.0.D0) F=0.D0
IF(I.EQ.IMAX) F=(1.D0-F1)/FRES
                                                                                      WTH04810
                                                                                      WTH04820
       F1=F2
                                                                                      WTH04830
       FCN=FCN+F*XI*XI
                                                                                      WTH04840
       FCN=FCN*0.54545D-2*XN-BA
                                                                                     WTH04850
       RETURN
                                                                                      WTH04860
       END
                                                                                      WTH04870
```

Appendix 5. Source listing of program WTHIN (continued).

```
WTH04880
       SUBROUTINE FINDS
                                                                                         WTH04890
                                                                                         WTH04900
C
           WTH04910
00000
                                                                                         WTH04920
              SUBROUTINE FINDS SEARCHES FOR THE WEIBULL PARAMETER B, GIVEN A AND C, IN CASE OF LEFT-TRUNCATION DUE TO LOW THINNING.
                                                                                         WTH04930
                                                                                         WTH04940
                                                                                         WTH04950
                                                                                         WTH04960
0000
           *************
                                                                                         WTH04970
                                                                                         WTH04980
                                                                                         WTH04990
                                                                                         WTH05000
       COMMON /OUE/ SI, AGE, XN, BA, HD, DMIN, DMED, DMAX, DBAR, IMAX, IMIN WTH05010
COMMON /TWO/ SI1, AGE1, XN1, BA1, DTHIN1, AGE2, Q, DTHIN, BRES, BRESR, QTHINWTH05020
, INDEX, ITHIN, ILOW, IROW
COMMON /FOUR/ A, B, BMIN, C, CONST, CINV, GAMMA
EXTERNAL FE
                                                                                         WTH05050
       EXTERNAL FF
                                                                                         WTH05060
       DATA TOL/0.5D-2/
                                                                                         WTH05070
       ₩2=-0.6D0
       CALL SECAN2(FF, TOL, W2, ITER, IER)
B=10.D0*(1.D0+DERF(W2))
                                                                                         WTH05080
                                                                                         WTH05090
                                                                                         WTH05100
       RETURN
                                                                                         WTH05110
       END
                                                                                         WTH05120
       SUBROUTINE SECAN2(F, ERROR, SOL, ITER, IER)
                                                                                         WTH05130
WTH05140
                                                                                         WTH05150
           WTH05160
                                                                                         WTH05170
WTH05180
                                SECANT METHOD
                                                                                         WTH05190
               FIND A ROOT OF A NONLINEAR EQUATON F(X) = 0.
                                                                                         WTH05200
                                                                                         WTH05210
                               F = FUNCTION.
               INPUTS :
                          ERROR = PROCEDURE IS STOPPED WHEN
                                                                                         WTH05220
                             |F(X)| < ERROR.
SOL = A GUESS OF THE SOLUTION TO
                                                                                         WTH05230
                                                                                         WTH05240
                                                                                         WTH05250
                                    F(X) = 0.
                                                                                         WTH05260
                            SOL = SOLUTION TO F(X) = 0.
ITER = NUMBER OF ITERATIONS.
IER = 0 = A ROOT IS FOUND.
= 1 = NO ROOT IS FOUND AFTER
                                                                                         WTH05270
               OUTPUTS :
                                                                                         WTH05280
                                                                                         WTH05290
                                                                                         WTH05300
                                                                                         WTH05310
WTH05320
                                         50 ITERATIONS.
           WTH05330
                                                                                          WTH05340
                                                                                          WTH05350
```

Appendix 5. Source listing of program WTHIN (continued).

```
IMPLICIT REAL*8 (A-H, O-Z)
                                                                              WTH05360
                                                                              WTH05370
          INITIALIZATION.
                                                                              WTH05380
                                                                              WTH05390
       IER=0
                                                                              WTH05400
       ITER=0
                                                                              WTH05410
      X0=SOL
                                                                              WTH05420
      FO=F(XO)
                                                                              WTH05430
      X1=X\dot{0}+0.5D0
                                                                              WTH05440
      F1=F(X1)
                                                                              WTH05450
      AFMIN=DABS(F1)
                                                                              WTH05460
      XMIN=X1
                                                                              WTH05470
      IF(AFMIN.LT.DABS(FO)) GO TO 1
                                                                             WTH05480
      C1=X0
                                                                             WTH05490
      C2=F0
                                                                             WTH05500
      X0=X1
                                                                             WTH05510
                                                                             WTH05520
      F0=F1
      X1=C1
                                                                             WTH05530
      F1=C2
                                                                             WTH05540
      AFMIN=DABS(F1)
                                                                             WTH05550
      XMIN=X1
                                                                             WTH05560
C
                                                                             WTH05570
         START THE ITERATIVE PROCEDURE.
C----
                                                                             WTH05580
C
                                                                             WTH05590
      ITER=ITER+1
   1
                                                                             WTH05600
      SOL=(X0*F1-X1*F0)/(F1-F0)
                                                                             WTH05610
      IF(DABS(SOL).GT.5.DO) GO TO 3
                                                                             WTH05620
                                                                             WTH05630
      F2=F(SOL)
                                                                             WTH05640
      AF2=DABS(F2)
      IF(AF2.GE.AFMIN) GO TO 2
AFMIN=AF2
                                                                             WTH05650
                                                                             WTH05660
                                                                             WTH05670
      XMIN=SOL
С
                                                                             WTH05680
C----
         CHECK CONVERGENCE.
                                                                             WTH05690
                                                                             WTH05700
WTH05710
C
   2 IF(AF2.LE.ERROR) RETURN
      IF(ITER.GE.50) GO TO 3
                                                                             WTH05720
C
                                                                             WTH05730
         REINITIALIZE VARIABLES.
C-
                                                                             WTH05740
                                                                             WTH05750
      X0=X1
                                                                             WTH05760
      F0=F1
                                                                             WTH05770
      X1=SOL
                                                                             WTH05780
      F1=F2
                                                                             WTH05790
      GO TO 1
                                                                             WTH05800
                                                                             WTH05810
C----
         NO SOLUTION AFTER 50 ITERATIONS.
                                                                             WTH05820
                                                                             WTH05830
                                                                             WTH05840
      1ER=1
   3
      SOL=XMIN
                                                                             WTH05850
      RETURN
                                                                             WTH05860
                                                                             WTH05870
      END
```

Appendix 5. Source listing of program WTHIN (continued).

```
DOUBLE PRECISION FUNCTION FF(W2)
                                                                                  WTH05880
                                                                                  WTH05890
C
                                                                                  WTH05900
          ***********************
                                                                                  WTH05910
000000000
                                                                                  WTH05920
             FUNCTION FF IS CALLED BY SUBROUTINE SECAN2 TO *
                                                                                  WTH05930
             EVALUATE THE LEFT-HAND SIDE OF THE EQUATION:
                                                                                  WTH05940
                                                                                  WTH05950
WTH05960
                                  FF(B) = 0.
          ***
                                                                                  WTH05970
                                                                                  WTH05980
                                                                                  WTH05990
       IMPLICIT REAL#8 (A-H,O-Y)
                                                                                  WTH06000
      COMMON /ONE/ SI, AGE, XN, BA, HD, DMIN, DMED, DMAX, DBAR, IMAX, IMIN WTH06010
COMMON /TWO/ SI1, AGE1, XN1, BA1, DTHIN1, AGE2, Q, DTHIN, BRES, BRESR, QTHINWTH06020
, INDEX, ITHIN, ILOW, IROW WTH06030
COMMON /FOUR/ A, B, BMIN, C, CONST, CINV, GAMMA WTH06040
       EXTERNAL Y
                                                                                  WTH06050
                                                                                  WTH06060
       B=10.D0*(1.D0+DERF(W2))
       FRES=1.DO-CDF(DTHIN1)
                                                                                  WTH06070
                                                                                  WTH06080
          EVALUATE THE INCOMPLETE GAMMA INTEGRAL.
                                                                                  WTH06090
Č-
                                                                                  WTH06100
                                                                                  WTH06110
       ZA=0.D0
       ZB=((DTHIN1-A)/B)**C
                                                                                  WTH06120
                                                                                  WTH06130
       CALL GAUSS(Y, ZA, ZB, S)
                                                                                  WTH06140
C
                                                                                  WTH06150
          EVALUATE FF(B).
C----
                                                                                  WTH06160
C
                                                                                  WTH06170
       FF=A+B*(GAMMA-S)/FRES-DBAR
       RETURN
                                                                                  WTH06180
                                                                                  WTH06190
       END
       SUBROUTINE GAUSS(F, XA, XB, S)
                                                                                  WTH06200
                                                                                  WTH06210
C
                                                                                  WTH06220
000000000000000
          ***********
                                                                                  WTH06230
                                                                                  WTH06240
                                                                                  WTH06250
                          GAUSS QUADRATURE METHOD
                                                                                  WTH06260
                  JTS: F = FUNCTION TO BE INTEGRATED.
XA AND XB = LOWER AND UPPER LIMITS OF
             INPUTS:
                                                                                  WTH06270
                                                                                  WTH06280
                                INTEGRATION.
                                                                                  WTH06290
                                                                                  WTH06300
                                                                                  WTH06310
                           S = VALUE OF THE INTEGRAL.
             OUTPUT:
                                                                                  WTH06320
          ************************************
                                                                                  WTH06330
                                                                                  WTH06340
                                                                                  WTH06350
```

Appendix 5. Source listing of program WTHIN (continued).

```
IMPLICIT REAL*8 (A-H, O-Z)
                                                                               WTH06360
 DIMENSION Y(5), W(5)
DATA Y/.1488743390D0,
                                                                               WTH06370
                                                                               WTH06380
         .4333953941D0,
.6794095683D0,
                                                                               WTH06390
                                                                              WTH06400
         .8650633667D0,
                                                                              WTH06410
          .9739065285D0/
                                                                              WTH06420
       W/.2955242247DO,
                                                                              WTH06430
         .2692667193DO,
                                                                              WTH06440
         .2190863625D0,
.1494513492D0,
.0666713443D0/, M/5/
                                                                              WTH06450
                                                                              WTH06460
                                                                              WTH06470
 C1=0.5D0*(XB+XA)
C2=0.5D0*(XB-XA)
                                                                              WTH06480
                                                                              WTH06490
 S=0.D0
                                                                              WTH06500
DO 2 1=1,M
C3=C2*Y(1)
                                                                              WTH06510
                                                                              WTH06520
S=S+W(1)*(F(C1+C3)+F(C1-C3))
                                                                              WTH06530
 S=S#C2
                                                                              WTH06540
 RETURN
                                                                              WTH06550
 END
                                                                              WTH06560
 DOUBLE PRECISION FUNCTION Y(X)
                                                                              WTH06570
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA
Y=X**CINV*DEXP(-X)
                                                                              WTH06580
                                                                              WTH06590
                                                                              WTH06600
 RETURN
                                                                              WTH06610
                                                                              WTH06620
 DOUBLE PRECISION FUNCTION CDF(XX)
                                                                              WTH06630
                                                                              WTH06640
                                                                              WTH06650
    ************************
                                                                              WTH06660
                                                                              WTH06670
    #
        FUNCTION CDF EVALUATES THE WEIBULL CDF.
                                                               #
                                                                              WTH06680
                                                                              WTH06690
    **************************************
                                                                              WTH06700
                                                                              WTH06710
                                                                              WTH06720
IMPLICIT REAL*8 (A-H,O-Y)
COMMON /FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA
                                                                              WTH06730
                                                                              WTH06740
CDF=0.DO
                                                                              WTH06750
IF(XX.LE.A) RETURN
C1=C*DLOG((XX-A)/B)
                                                                              WTH06760
                                                                              WTH06770
C2=0.D0
                                                                              WTH06780
 IF(C1.GT.-50.D0.AND.C1.LT.50.D0) C2=-DEXP(C1)
                                                                              WTH06790
IF(C1.GT.50.D0) C2=-1.D8
                                                                              WTH06800
C3=0.D0
                                                                              WTH06810
IF(C2.GT.-50.D0) C3=DEXP(C2)
                                                                              WTH06820
CDF=1.DO-C3
                                                                              WTH06830
RETURN
                                                                              WTH06840
END
                                                                              WTH06850
```

Appendix 5. Source listing of program WTHIN (continued).

```
SUBROUTINE OUTPUT(111)
                                                                                            WTH06860
                                                                                            WTH06870
                                                                                            WTH06880
            WTH06890
                                                                                            WTH06900
               SUBROUTINE OUTPUT PRINTS THE STAND AND STOCK
                                                                                            WTH06910
               TABLE.
                                                                                            WTH06920
                                                                                            WTH06930
           WTH06940
                                                                                            WTH06950
                                                                                            WTH06960
        IMPLICIT REAL*8 (A-H, 0-Z)
       WTH06970
             ,BOB/ 0.34864D0,
                                   0.00232D0/
                                                                                            WTH07070
       , BOB/ 0.3484840, 0.002320/

,BIB/ 0.11691D0, 0.00185D0/

,TOP/4.D0/,KROW/'ROW '/,KLOW/'LOW '/,KTYPE/' '/

DATA CF/0.,0.,0.,0.,84.,85.,87.,90.,91.,92.,93.,94.,95.,95.,

,95.,95.,95.,95./

BH(1)=0.46151540D0 + 0.43274521D0*AINV + 0.93333081D0*HDLOG
                                                                                            WTH07080
                                                                                           WTH07090
                                                                                           WTH07100
                                                                                            WTH07110
                                                                                            WTH07120
                  - 0.08583288D0*BLOG + 0.07596439*XNLOG
                                                                                            WTH07130
        BH(2) = -2.15312264D0
                                                                                           WTH07140
        TOPOB=TOP**ROB(2)
                                                                                            WTH07150
       TOPIB=TOP**RIB(2)
                                                                                           WTH07160
                                                                                            WTH07170
C----
           WRITE HEADINGS.
                                                                                            WTH07180
                                                                                           WTH07190
       IF(III.EQ.2) GO TO 11

WRITE(6,666) (ITITLE(II), II=1,20)

FORMAT('1'/10X,20A4)

WRITE(6,599) SI, HD, AGE, DBAR, XN, DMIN, BA

FORMAT(//33X,'INPUTS',22X,'PREDICTED'/33X,6('-'),22X,9('-')

'/31X,'SITE =',F7.2,18X,'HD =',F6.2

'/32X,'AGE =',F7.2,9X,'AVERAGE DBH =',F6.2

'/20X,'NUMBER OF TREES =',F7.2,9X,'MINIMUM DBH =',F6.2

'/25X,'BASAL AREA =',F7.2)

GO TO 12
                                                                                           WTH07200
                                                                                           WTH07210
666
                                                                                           WTH07220
                                                                                           WTH07230
599
                                                                                           WTH07240
                                                                                            WTH07250
                                                                                           WTH07260
                                                                                           WTH07270
                                                                                           WTH07280
       GO TO 12
                                                                                           WTH07290
       KTYPE=KLOW
  11
                                                                                           WTH07300
      IF(ITHIN.NE.3) KTYPE=KROW
                                                                                           WTH07310
                                                                                           WTH07320
600
                                                                                           WTH07330
                                                                                           WTH07340
601
                                                                                           WTH07350
                                                                                           WTH07360
                                                                                           WTH07370
                                                                                           WTH07380
602
                                                                                           WTH07390
                                                                                           WTH07400
                                                                                           WTH07410
603
                                                                                           WTH07420
                                                                                           WTH07430
604
                                                                                           WTH07440
                                                                                           WTH07450
                                                                                           WTH07460
                                                                                           WTH07470
                                                                                           WTH07480
```

Appendix 5. Source listing of program WTHIN (continued).

```
WTH07490
C-
           INITIALIZATION.
                                                                                    WTH07500
                                                                                    WTH07510
       F1=0.D0
                                                                                    WTH07520
       BB=0.D0
                                                                                    WTH07530
       XNRES=0.DO
                                                                                    WTH07540
       DAVG=0.DO
                                                                                    WTH07550
       TVOB=0.DO
                                                                                   WTH07560
       TVIB=0.DO
                                                                                   WTH07570
       TVOB4=0.D0
                                                                                   WTH07580
       TV1B4=0.D0
                                                                                   WTH07590
       CVOB4=0.DO
                                                                                   WTH07600
       XNT=XN
                                                                                   WTH07610
       IMIN1=IMIN
                                                                                   WTH07620
       IF(III.EQ.2) GO TO 13
                                                                                   WTH07630
       IF(A.GE.DTHIN1) GO TO 3
                                                                                   WTH07640
       F1=CDF(DTHIN1)
                                                                                   WTH07650
       IMIN1=DTHIN1+0.51DO
                                                                                   WTH07660
       XNT=XN/(1,D0-F1)
                                                                                   WTH07670
      GO TO 3
IF(ITHIN.EQ.1) GO TO 3
IF(ITHIN.EQ.3) GO TO 2
                                                                                   WTH07680
                                                                                   WTH07690
                                                                                   WTH07700
       IF(A.LT.DTHIN1) GO TO 1
                                                                                   WTH07710
                                                                                   WTH07720
          ROW THINNING. NO PREVIOUS LOW THINNING.
                                                                                   WTH07730
Ċ
                                                                                   WTH07740
      XNT=XN*Q
                                                                                   WTH07750
       GO TO 3
                                                                                   WTH07760
C
                                                                                   WTH07770
          ROW THINNING. PREVIOUS LOW THINNING.
                                                                                   WTH07780
                                                                                   WTH07790
      F1=CDF(DTHIN1)
                                                                                   WTH07800
      XNT=XN*Q/(1.DÓ-F1)
                                                                                   WTH07810
       IMIN1=DTHIN1+0.51D0
                                                                                   WTH07820
      GO TO 3
                                                                                   WTH07830
С
                                                                                   WTH07840
          LOW THINNING.
                                                                                   WTH07850
                                                                                   WTH07860
   2 F1=CDF(DTHIN)
                                                                                   WTH07870
      IF(A.LT.DTHIN1) XNT=XN/(1.DO-CDF(DTHIN1))
                                                                                   WTH07880
      IMIN1=DTHIN+0.51D0
                                                                                   WTH07890
                                                                                   WTH07900
         LOOP OVER DBH CLASSES.
                                                                                   WTH07910
                                                                                   WTH07920
      CONTINUE
                                                                                   WTH07930
      DO 5 I=IMIN1, IMAX XI=DFLOAT(I)
                                                                                   WTH07940
                                                                                   WTH07950
      F2=CDF(X1+0.5D0)
                                                                                   WTH07960
      F=XNT*(F2-F1)
                                                                                   WTH07970
      IF(1.EQ. IMIN1. AND. III. EQ. 2) F=F*QTHIN
                                                                                   WTH07980
      IF(F.LT.O.DO) F=0.DO
                                                                                   WTH07990
      F1=F2
                                                                                   WTH08000
      X12=X1*X1
                                                                                   WTH08010
      BASAL=0.545415D-2*X12*F
                                                                                   WTH08020
      H=DEXP(BH(1)+BH(2)/XI)
D2H=XI2*H
                                                                                  WTH08030
                                                                                   WTH08040
      VOB=F*(BOB(1)+BOB(2)*D2H)
VIB=F*(BIB(1)+BIB(2)*D2H)
                                                                                  WTH08050
                                                                                  WTH08060
      VOB4=0.DO
                                                                                  WTH08070
      V1B4=0.DO
                                                                                  WTH08080
     IF(I.LT.5) GO TO 4
VOB4=VOB*(1.DO+ROB(1)*TOPOB*X(**ROB(3))
VIB4=VIB*(1.DO+RIB(1)*TOPIB*X(**RIB(3))
                                                                                  WTH08090
                                                                                  WTH08100
                                                                                  WTH08110
```

Appendix 5. Source listing of program WTHIN (continued).

```
IF(1.LE.20) CVOB4=CVOB4+VOB4/CF(1)
                                                                                                                  WTH08120
                                                                                                                  WTH08130
          DAVG=DAVG+F*XI
         BB=BB+BASAL
                                                                                                                  WTH08140
         XNRES=XNRES+F
                                                                                                                  WTH08150
                                                                                                                  WTH08160
          TVOB=TVOB+VOB
                                                                                                                  WTH08170
          TVIB=TVIB+VIB
          TVOB4=TVOB4+VOB4
                                                                                                                  WTH08180
          TV1B4=TV1B4+V1B4
                                                                                                                  WTH08190
         WRITE(6,605) 1,F,H,BASAL,VOB,VIB,VOB4,VIB4
FORMAT(111,7F11.1)
                                                                                                                  WTH08200
605
                                                                                                                  WTH08210
                                                                                                                  WTH08220
         DAVG=DAVG/XNRES
C
                                                                                                                  WTH08230
                                                                                                                  WTH08240
              END LOOP.
C----
                                                                                                                  WTH08250
         WTH08260
          IF(III.EQ.2) GO TO 7
                                                                                                                  WTH08270
                                                                                                                  WTH08280
608
                                                                                                                  WTH08290
                                                                                                                  WTH08300
                                                                                                                  WTH08310
                                                                                                                  WTH08320
                                                                                                                  WTH08330
                                                                                                                  WTH08340
                                                                                                                  WTH08350
         C1=DABS(BA-BB)
                                                                                                                  WTH08360
          IER=1
          IF(C1.LT.0.05) IER=0
                                                                                                                  WTH08370
         IF(IER.EQ.0) WRITE(6,609)
FORMAT(/35X, 'CONVERGENCE ATTAINED')
IF(IER.NE.0) WRITE(6,610)
FORMAT(/23X, 'DIFFERENCE IN BASAL AREA > 0.05 SQ.FT./ACRE')
                                                                                                                  WTH08380
                                                                                                                  WTH08390
609
                                                                                                                  WTH08400
                                                                                                                  WTH08410
610
                                                                                                                  WTH08420
         WIH08420
WRITE(6,606) XNRES, BB, TVOB, TVIB, TVOB4, TVIB4
FORMAT(16X,6('-'),11X,5(5X,6('-'))/11X,F11.1,11X,5F11.1)
WRITE(6,611) SI, AGE1, XNRES, BB, DAVG
FORMAT(/42X,'SITE =',F7.2/43X,'AGE =',F7.2/31X,'NUMBER OF'
WTH08450

'TREES =',F7.2/36X,'BASAL AREA =',F7.2

'/35X,'AVERAGE DBH =',F7.2,2X,'BASED ON 1-INCH DBH CLASSES')
WTH08480
          GO TO 8
606
611
         XNTHIN=XN-XNRES
                                                                                                                  WTH08490
                                                                                                                  WTH08500
          BATHIN=BA-BB
                                                                                                                  WTH08510
          TVTHIN=TVOB1-TVOB
                                                                                                                  WTH08520
          TV4T=TV0B41-TV0B4
                                                                                                                  WTH08530
         CV4T=CV0B41-CV0B4
         CV4T=CVOB41-CVOB4
WRITE(6,607) KTYPE,XNTHIN,BATHIN,TVTHIN,TOP,TV4T,TOP,CV4T
FORMAT(//15X,'AMOUNT REMOVED IN ',A4,'THINNING'
'15X,6('-'),1X,7('-'),1X,'--',1X,3('-'),1X,8('-')
'/31X,'NUMBER OF TREES = ',F7.2
'/36X,'BASAL AREA = ',F7.2
'/22X,'TOTAL CU.FT. VOLUME O.B. = ',F7.2
'/20X,'CU.FT. VOLUME O.B. TO',F3.0,'IN = ',F7.2
'/27X,'CORD VOLUME TO',F3.0,'IN = ',F7.2
                                                                                                                  WTH08540
                                                                                                                  WTH08550
607
                                                                                                                  WTH08560
                                                                                                                  WTH08570
                                                                                                                  WTH08580
                                                                                                                  WTH08590
                                                                                                                  WTH08600
                                                                                                                  WTH08610
                                                                                                                  WTH08620
          XN=XNRES
                                                                                                                  WTH08630
          BA=BB
                                                                                                                  WTH08640
          TVOB1=TVOB
                                                                                                                  WTH08650
          TV0B41=TV0B4
                                                                                                                  WTH08660
          CVOB41=CVOB4
                                                                                                                  WTH08670
          RETURN
                                                                                                                  WTH08680
          END
```

Appendix 5. Source listing of program WTHIN (continued).

```
SUBROUTINE THIN
                                                                                             WTH08690
00000000000
                                                                                             WTH08700
                                                                                             WTH08710
            WTH08720
                                                                                             WTH08730
                SUBROUTINE THIN TAKES CARE OF THE THINNING
                                                                                             WTH08740
                OPTIONS AT AGE1.
                                                                            #
                                                                                             WTH08750
                                                                                             WTH08760
            ********************************
                                                                                             WTH08770
                                                                                             WTH08780
                                                                                             WTH08790
        IMPLICIT REAL*8 (A-H, O-Z)
                                                                                             WTH08800
        COMMON /ONE/ SI, AGE, XN, BA, HD, DMIN, DMED, DMAX, DBAR, IMAX, IMIN
                                                                                             WTH08810
        COMMON /TWO/ SI1, AGE1, XN1, BA1, DTHIN1, AGE2, Q, DTHIN, BRES, BRESR, QTHINWTH08820
, INDEX, ITHIN, ILOW, IROW WTH08830
COMMON /THREE/ ITITLE(20), AINV, XNLOG, BLOG, HDLOG, TVOB1, TVOB41 WTH08840
        COMMON /FOUR/ A, B, BMIN, C, CONST, CINV, GAMMA
                                                                                            WTH08850
                                                                                            WTHO8860
        QTHIN=1.DO
                                                                                            WTH08870
        GO TO (1,2,3,2), ITHIN
                                                                                            WTH08880
                                                                                            WTH08890
            ITHIN = 1 = NO THINNING AT AGE1.
                                                                                            WTH08900
C
                                                                                            WTH08910
    1 RETURN
                                                                                            WTH08920
С
                                                                                            WTH08930
C-
            ITHIN = 2 = ROW THINNING AT AGE1. EVERYTHING IS REDUCED
                                                                                            WTH08940
С
                           BY A FACTOR Q.
                                                                                            WTH08950
C
                                                                                            WTH08960
        IF(IROW.EQ.2.AND.ITHIN.EQ.2) Q=BRESR/BA
IF(IROW.EQ.2.AND.ITHIN.EQ.4) Q=1.D0-Q*(1.D0-BRESR/BA)
Q1=100.D0-Q*100.D0
                                                                                            WTH08970
                                                                                            WTH08980
                                                                                            WTH08990
        WRITE(6,666) (ITITLE(II), II=1,20) FORMAT('1'//10X,20A4)
                                                                                            WITHOGOOD
666
                                                                                            WTH09010
        WRITE(6,600) AGE1,Q1
FORMAT(//32X,'ROW THINNING AT AGE',F4.0
//F26.2,'% OF TREES IN ALL DIAMETER CLASSES ARE CUT')
IF(Q1.GE.100.D0) RETURN
CALL OUTPUT(2)
                                                                                            WTH09020
600
                                                                                            WTH09030
                                                                                            WTH09040
                                                                                            WTH09050
                                                                                            WTH09060
        IF(ITHIN.EQ.2) GO TO 10
                                                                                            WTH09070
        ITHIN=3
                                                                                            WTH09080
C
                                                                                            WTH09090
C-
           ITHIN = 3 = LOW THINNING AT AGE1.
                                                                                            WTH09100
C
                                                                                            WTH09110
    3 GO TO (4,5), ILOW
                                                                                            WTH09120
                                                                                            WTH09130
           ILOW = 1 = ALL TREES HAVING DBH LESS THAN DTHIN ARE CUT.
                                                                                            WTH09140
C
                                                                                            WTH09150
   Ц
       IDTHIN=DTHIN+0.5D0
                                                                                            WTH09160
       DTHIN=DFLOAT(IDTHIN)-0.5D0
                                                                                            WTH09170
        IF(DTHIN.LT.A.OR.DTHIN.LT.DTHIN1) RETURN
                                                                                            WTH09180
       WRITE(6,666) (ITITLE(II), II=1,20)
WRITE(6,601) AGE1,DTHIN
FORMAT(//32X, 'LOW THINNING AT AGE',F4.0
//23X, 'ALL TREES UNDER',F5.1,' INCHES DBH ARE CUT')
                                                                                            WTH09190
                                                                                            WTH09200
601
                                                                                            WTH09210
                                                                                            WTH09220
       CALL OUTPUT(2)
                                                                                            WTH09230
       DTHIN1=DTHIN
                                                                                            WTH09240
       GO TO 10
                                                                                            WTH09250
```

Appendix 5. Source listing of program WTHIN (continued).

```
WTH09260
                                                                                                        WTH09270
             ILOW = 2 = THIN TO A SPECIFIED RESIDUAL BASAL AREA (BRES).
C
                                                                                                        WTH09280
                                                                                                        WTH09290
        BTHIN=BA-BRES
                                                                                                        WTH09300
        BB=0.D0
        IF(A.LT.DTHIN1) GO TO 6
                                                                                                        WTH09310
                                                                                                        WTH09320
        F1=0.D0
                                                                                                        WTH09330
        XNT=XN
        IMIN1=IMIN
                                                                                                        WTH09340
                                                                                                        WTH09350
        GO TO 7
                                                                                                        WTH09360
    6 F1=CDF(DTHIN1)
                                                                                                        WTH09370
        XNT=XN/(1.D0-F1)
                                                                                                        WTH09380
        IMIN1=DTHIN1+0.51D0
                                                                                                        WTH09390
                                                                                                        WTH09400
            FIND DTHIN CORRESPONDING TO BRES.
                                                                                                        WTH09410
C
                                                                                                        WTH09420
    7
       DO 8 I=IMIN1, IMAX
                                                                                                        WTH09430
        XI = DFLOAT(I)
                                                                                                        WTH09440
        F2=CDF(XI+0.5D0)
        F=XNT*(F2-F1)
                                                                                                        WTH09450
        LF(F.LT.0.D0) F=0.D0
                                                                                                        WTH09460
                                                                                                        WTH09470
        F1=F2
                                                                                                        WTH09480
        BASAL=0.545415D-2*F*X1*X1
                                                                                                        WTH09490
        BB=BB+BASAL
                                                                                                        WTH09500
        IF(BB,GT.BTHIN) GO TO 9
                                                                                                        WTH09510
    8
        CONTINUE
                                                                                                        WTH09520
             QTHIN IS THE RESIDUAL PROPORTION (AFTER / BEFORE THINNING)
                                                                                                        WTH09530
C----
             OF THE DBH CLASS WHOSE LOWER LIMIT IS DITHIN.
                                                                                                        WTH09540
С
                                                                                                        WTH09550
C
                                                                                                        WTH09560
        QTHIN=(BB-BTHIN)/BASAL
    9
                                                                                                        WTH09570
        DTHIN=XI-0.5DO
        WRITE(6,666) (ITITLE(II), II=1,20)
WRITE(6,660) AGE1, BRES
FORMAT(//32X, 'LOW THINNING AT AGE', F4.0

//23X, 'THIN TO', F7.2, 'SQ.FT. RESIDUAL BASAL AREA')
IF(BRES.LE.O.DO) RETURN
CALL OUTPUT(2)
                                                                                                        WTH09580
                                                                                                        WTH09590
                                                                                                        WTH09600
602
                                                                                                        WTH09610
                                                                                                        WTH09620
                                                                                                        WTH09630
                                                                                                        WTH09640
        DTHIN1=DTHIN
                                                                                                        WTH09650
        XNLOG=DLOG(XN)
                                                                                                        WTH09660
        BLOG=DLOG(BA)
                                                                                                        WTH09670
        RETURN
                                                                                                        WTH09680
        FND
                                                                                                        WTH09690
        BLOCK DATA
        BLOCK DATA

IMPLICIT REAL*8 (A-H,O-Z)

COMMON /ONE/ SI,AGE,XN,BA,HD,DMIN,DMED,DMAX,DBAR,IMAX,IMIN

WTH09710

COMMON /TWO/ SI1,AGE1,XN1,BA1,DTHIN1,AGE2,Q,DTHIN,BRES,BRESR,QTHINWTH09720

,INDEX,ITHIN,ILOW,IROW

COMMON /THREE/ ITITLE(20),AINV,XNLOG,BLOG,HDLOG,TVOB1,TVOB41

COMMON /FOUR/ A,B,BMIN,C,CONST,CINV,GAMMA

DATA AGE/0.DO/,XN/0.DO/,BA/0.DO/,DTHIN1/0.DO/,ITHIN/1/

WTH09780
                                                                                                        WTH09780
```