
A Model for Assessing Hardwood Competition Effects on Yields of Loblolly Pine Plantations

Publication No. FWS-3-84

School of Forestry and Wildlife Resources
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Virginia Tech does not discriminate against employees, students, or applicants on the basis of race, sex, handicap, age, veteran status, national origin, religion, or political affiliation. Anyone having questions concerning discrimination should contact the Equal Opportunity/Affirmative Action Office.

A MODEL FOR ASSESSING HARDWOOD COMPETITION EFFECTS ON YIELDS OF LOBLOLLY PINE PLANTATIONS

bу

Harold E. Burkhart Peter T. Sprinz

Publication No. FWS-3-84
School of Forestry and Wildlife Resources
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

1984

PREFACE

This bulletin presents a model to predict pine survival, growth and yield for unthinned loblolly pine plantations with varying levels of hardwood competition in the main canopy. Those wishing to obtain copies of the software should write the authors at:

School of Forestry and Wildlife Resources Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

To defer the cost of postage and handling, a charge of \$25.00 will be made for a card deck of the FORTRAN program or a diskette containing the BASIC program. Checks should be made payable to "Department of Forestry, VPI & SU".

Although the software presented here has been extensively tested and checked for accuracy and, to the best of our knowledge, contains no errors, neither Virginia Polytechnic Institute and State University, the Department of Forestry, nor the authors claim any responsibility for any errors that do arise.

ACKNOWLEDGMENTS

This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement CR809002020 to Oregon State University (with Subcontract No. 2-4229-02 to Virginia Polytechnic Institute and State University). The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Support for this work was also provided by the Loblolly Pine Growth and Yield Research Cooperative at Virginia Polytechnic Institute and State University. We gratefully acknowledge the Department of Forestry at Auburn University for use of data to validate the model described herein.

ABSTRACT

A model was developed to predict pine survival, growth and yield for unthinned loblolly pine plantations with varying levels of hardwood competition in the main canopy. Inputs for the model are number of loblolly pine trees per acre planted, site index for loblolly pine, percent of hardwood basal area in the main canopy of the stand, and age(s) at which output is desired. From these inputs the model computes, by 1-inch dbh classes, the number of trees surviving, basal area, and volumes per acre.

The model, which was constructed using sample plot data from old-field and cutover-site plantations, was validated with independent data from a hardwood conversion/site preparation study. Overall, there was close agreement between the observed values and the model predictions.

AUTHORS

The authors are, respectively, Thomas M. Brooks Professor and Graduate Research Assistant in the Department of Forestry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.

TABLE OF CONTENTS

	<u>Page</u>
List of Tables	٧
List of Figures	vi
INTRODUCTION	1
MODEL INPUTS-OUTPUTS	1
DATA BASE	2
Old-field Plantation Plots	3
Cutover-site Plantation Plots	3
Conversion-study Plots	6
MODEL STRUCTURE	7
Approach	7
Height-age Development	7
Height-diameter Curves	8
Individual Tree Volume Relationships	8
Diameter Distribution	9
Pine Survival	13
Projection of Stand Composition	14
MODEL VALIDATION	17
LIMITATIONS	19
LITERATURE CITED	24
APPENDIX	O.E.

LIST OF TABLES

<u>[ab]e</u>		<u>Page</u>
1	Summary of characteristics of sample plot data used to model hardwood competition effects on loblolly pine plantation yields.	4
2	Stand and stock tables for the planted component of unthinned loblolly pine plantations at age 30 with 800 trees per acre planted on site index 60 (base age 25) land.	² 20

LIST OF FIGURES

<u> lgure</u>		<u>Page</u>
1	Map showing distribution of sample plots used to model hardwood competition effects on loblolly pine plantation yields.	5
2	Surviving loblolly pine trees per acre as related to percent of basal area in hardwood. Figure is for 800 trees per acre planted.	15
3	Relationship between percent basal area composed of hardwoods in the main canopy of loblolly pine plantations at ages 11 and 24 in a hardwood conversion/site preparation study, Fayette County, Alabama.	16
4	Total yield of loblolly pine versus percent of total stand basal area in hardwood from plot observations in a hardwood conversion/site preparation study in Fayette County, Alabama. The line represents predictions from program HDWD.	18
5	Pine dbh distribution for 0, 20, and 40 percent of the total stand basal area in hardwood. These histograms are for age 30 with 800 trees per acre planted on site index 60 (base age 25 years) land.	22

A MODEL FOR ASSESSING HARDWOOD COMPETITION

EFFECTS ON YIELDS OF

LOBLOLLY PINE PLANTATIONS

Harold E. Burkhart and Peter T. Sprinz

INTRODUCTION

It is generally recognized that hardwood competitors significantly affect yields of pine stands. A model which predicts pine survival, growth and yield for stands with varying levels of competing vegetation is needed to assess the feasibility of various vegetation management strategies. In this bulletin, a model for the growth and yield of unthinned loblolly pine (Pinus taeda L.) plantations with varying levels of hardwood competition is presented. The inputs required, outputs obtained, data base used, modeling methods employed, assumptions made and limitations of the model are discussed.

MODEL INPUTS-OUTPUTS

To operate the loblolly pine model, called HDWD, the user must specify:

- Number of loblolly pine trees per acre planted (T_p)
- Site index for loblolly pine (feet at base age 25 years) (SI)
- -Percent of hardwood basal area in the main canopy of the stand (%B,)
- Ages at which output is desired (A)

From these input parameters, the model computes, by 1-inch diameter at breast height (dbh) classes, estimates for the pine components of:

- -Number of trees surviving per acre
- Total height (feet)
- Basal area (square feet per acre)
- Total stem volume, outside bark (cubic feet per acre)
- * Pulpwood volume, outside bark, to a 4-inch top diameter (ob) of the trees in the 5-inch dbh class and above (cubic feet per acre)
- Sawlog volume, outside bark, to a 6-inch top diameter (ob) of the trees in the 8-inch dbh class and above (cubic feet per acre)

In addition to the values by dbh class, total numbers of trees, basal area and volumes and arithmetic mean dbh are also shown.

With the complete stand table (numbers of trees by dbh class) provided, one can evaluate the impact of competing vegetation on product yields as well as on overall survival and volume. Such flexibility is needed when performing economic analyses.

The model components were implemented through an interactive computer program called HDWD. The program was written in standard FORTRAN for mainframe computers and in BASIC for the IBM Personal Computer. A user's guide to this program, an example of a user's session with the program, and a complete listing of the FORTRAN and BASIC code is included in the Appendix.

DATA BASE

Three primary data sources were used to construct a model designed to quantify hardwood competition effects on loblolly pine yields:

- 1. Data from unthinned loblolly pine plantations established on abandoned agricultural land (called "old fields") were used to establish an "upper limit" on hardwood competition control effectiveness for site prepared lands that were supporting forests before being cut and regenerated to loblolly pine plantations. Because these old-field plantations developed almost virtually free of competition from hardwood species, the survival and growth can be regarded as an upper limit for plantations established on cutover, site-prepared areas, which are the areas of primary concern in contemporary plantation management in the South. (Pine seedlings for many of these old-field plantations experienced considerable herbaceous and grass competition in the early years; however, due to limitations in data bases, it was not possible to model these effects.)
- 2. Measurements from unthinned loblolly pine plantations on cutover, site-prepared areas were used, where possible, to estimate the effects of competing hardwoods on pine survival and growth. The data available included a wide variety of site preparation methods, with varying degrees of effectiveness and thus varying levels of competing vegetation.
- 3. Observations from a site conversion study that was installed and maintained by Auburn University were used to develop basic relationships and evaluate various assumptions. Although this study (commonly referred to as the "Fayette Study") was not designed for the objectives of this analysis, it was the only designed-experiment type data available for this modeling effort. The old-field and cutover-site plantation data came from sample plots in operationally-established plantations.

Old-field Plantation Plots

Selected old-field loblolly pine plantations were sampled in the Piedmont and Coastal Plain regions of Virginia, and in the Coastal Plain region of Delaware, Maryland and North Carolina. One hundred and twentynine of the 189 sample plots were located on Coastal Plain sites, while 60 were in the Piedmont region of Virginia.

Temporary 0.1-acre, circular sample plots were randomly located in selected stands. To be sampled, plantations were required to be unthinned, free of severe insect or disease damage, unburned and unpruned, relatively free of wildlings and contain no interplanting.

On each plot, diameter at breast height (dbh) was recorded to the nearest 0.1 inch for all trees in the 1-inch dbh class and above. Total height was recorded to the nearest 1.0 foot for at least one, but usually two trees per 1-inch dbh class. Six to eight dominant and codominant trees were selected as sample site trees and total age of the stand was determined from planting records or increment borings.

A summary of the sample plot characteristics is shown in Table 1; the geographic distribution of the plots is displayed in Figure 1. Additional information about these plots can be obtained from Burkhart et al. (1972).

Cutover-site Plantation Plots

During the 1980-81 and 1981-82 dormant seasons, permanent plots were established in cutover, site-prepared plantations throughout the native range of loblolly pine. The initial measurement data from these permanent plots were available for use in this study. To be included in the sample, the plantations had to meet the following specifications: at least eight years in age (defined as years since planting), unthinned, free of evidence of heavy disease or insect attack, not heavily damaged by ice or wind storms, free of interplanting, unpruned, not fertilized within the last four years, not planted with genetically improved stock, contain a minimum of 200-300 planted pine stems per acre which appear "free to grow," not more than 25 percent of the main canopy composed of volunteer pines, and established on a cutover area that received "typical" site preparation treatment for the site conditions and time at which the plantation was established.

The following data were recorded for all planted pines: dbh to the nearest 0.1 inch, total height to the nearest 1.0 foot, height to the base of the live crown, crown class, and a stem quality assessment. In addition, number of trees planted and age were determined.

The following information was recorded for natural pines and hardwoods which were in the main canopy: dbh to the nearest 0.1 inch, total height to the nearest 1.0 foot, and species. Natural pine and hardwood trees not in the main canopy, but greater than 0.5 inches in dbh, were tallied by linch dbh classes only.

Table 1. Summary of characteristics of sample plot data used to model hardwood competition effects on loblolly pine plantation yields.

Data	No.	Mean	Minimum	Maximum
Old-field Plantation Plots	189		6.60	
Site index 25 (ft.) a/ Age Surviving pine (trees/ac) Basal area pine (sq.ft./ac)	en.	67.0 16.6 751.9 151.8	47.4 9 300 72.0	92.3 35 2900 277.3
Cutover-site Plantation Plots	186			
Site index 25 (ft.) a/ Age Surviving pine (trees/ac) % Basal area in hardwood Basal area pine (sq.ft./ac) Conversion Study		62.8 15.2 558.3 4.8 150.1	33.5 8 275 0.0 22.9	97.3 25 950 27.8 230.9
Age 11				
Surviving pine (trees/ac) % Basal area in hardwood Basal area pine (sq.ft./ac)	25 ^b / 25 25	486.5 39.7 40.4	40.8 3.7 0.0	673.5 100.0 90.6
Age 24				
Site index 25 (ft.) a/ Surviving pine (trees/ac) % Basal area in hardwood Basal area pine (sq.ft./ac)	29 33 33 33	58.8 316.0 33.1 97.6	44.3 0 0.0 0.0	69.1 531 100.0 174.9

All site index values were computed using the equation for combined coastal plain and piedmont data from Amateis and Burkhart (in press).

The number of usable observations for each characteristic varied somewhat between measurement times. Two of the original 35 plots were cut in early 1980 during a southern pine beetle salvage operation, leaving a maximum of 33 plots for measurement.

LEGEND

Summary information on these plots is contained in Table 1, while the geographic location is shown in Figure 1. Additional detail can be obtained from Burkhart \underline{et} al. (in press).

Conversion-Study Plots

In January, 1959, a hardwood conversion/site preparation study was installed at the Fayette Experimental Forest of the Auburn University Agricultural Experiment Station in Fayette County, Alabama, which is in the Upper Coastal Plain soils region. The objective of this study was to test effects of seven methods of conversion on survival and early growth of planted loblolly pine on a cutover-site.

A randomized block design, consisting of 7 treatments (including an untreated check) with 5 replications per treatment, was installed on a relatively uniform site. Treatment plots were square, 132 feet on each side, with a 46.2 foot \times 46.2 foot permanent sample plot located in the center of each treated plot. The treatments were:

- 1. Check
- 2. Scarification by bulldozer
- 3. Injector-applied herbicide
- 4. Girdle without herbicide
- 5. Axe frill and herbicide
- 6. Chain girdle and herbicide
- 7. Foliage spraying plus axe frill and herbicide

These treatments were widely varying in effectiveness, resulting in sample plots that ranged from essentially pure pine to pure hardwood. A detailed description of the study area, methods, treatments and results at the end of the first 6 years was given by Whipple and White (1965).

Subsequent measurements on both the pine and the hardwood components at ages 11 and 24 were made available for use in these analyses. The age 11 information was on a plot basis with details on the number of surviving trees, average dbh and basal area per acre of the pine and hardwood components provided. The following individual-tree information was provided with the age 24 measurements: dbh to the nearest 0.1 inch, total stem volume in cubic feet, crown class and, on a subsample of trees, total height to the nearest 1.0 foot. Hardwood information at age 24 included the number of trees by species in 2-inch dbh classes and 10-foot total height classes. Table 1 gives summary statistics for the age 11 and 24 measurements; Figure 1 shows the study location.

MODEL STRUCTURE

Approach

The approach taken to modeling hardwood competition effects on yield was to regard values observed in old-field plantations as upper limits and to compute reduction factors based on the level of hardwood competition. As a first step, the effects of hardwood competition on various stand components were assessed. These assessments were made by: (1) computing regression equations with the data from cutover-site plantations and determining if hardwood variables significantly reduced the error sum of squares, and by (2) comparing regression equations fitted to the old-field data with those fitted to the cutover-site data. Because the level of hardwood competition was relatively low in most of the cutover-site plots (see Table 1), attempts to incorporate hardwood competition variables using these data were generally not successful. Comparisons between regressions fitted to the old-field versus the cutover-site data showed significant differences, however. These differences were examined on the following stand components of the pine portion of the stands:

- 1. Height over age development
- 2. Height over diameter curves
- Individual tree volume relationships
- 4. Diameter distribution
- 5. Survival relationships

Height-Age Development

Comparisons of height-age (site index) curves for old-fields versus cutover-sites were made by using data from stem analysis trees collected at the time of plot installation. These comparisons showed statistically significant differences between the two data sets. The differences were not overly large from a practical standpoint, however, and they could not be related to level of hardwood competition. This lack of a significant relationship to level of hardwood in the stand is consistent with the generally small effect of stand density — over a fairly broad range — on height growth of loblolly pine. Since the primary purpose of this model is to assess levels of hardwood competition on the yields of loblolly pine plantations on cutover, site-prepared land, we adopted the site index curves from Amateis and Burkhart (in press) which were derived from stem analysis trees taken on the cutover-site plantation plots described previously. The equation for the combined piedmont and coastal plain data is

$$\ln H_d = \ln SI (A/25)^{0.10283} e^{-2.1676(1/A-1/25)}$$

where

 H_{d} = average height of dominants and codominants (feet)

SI = site index, base age 25 years (feet)

A = plantation age (years since planting)

In = logarithm base e

Amateis and Burkhart present coefficients for subdivisions of the data; if a user wants to use a site index curve for a specific physiographic region, the appropriate coefficients can be substituted easily.

Height-Diameter Curves

Height-diameter curves were significantly different for the old-field and cutover-site data. Differences could not be related to levels of hardwood competition, however, and comparisons of the two curves showed predicted values to be almost identical. The large sample sizes (2,452 trees from old-fields and 56,989 from cutover-sites) resulted in a very powerful test that was almost certain to indicate a significant difference. Because the primary objective is to model yields for cutover-site areas, the height-diameter curve fitted to the cutover-site data was incorporated into the model. The equation is

$$log (H_d/H_i) = -0.040006 + (1/D_i - 1/D_{max}) \times (0.428373 - 0.497483 log T_s + 0.363755/A + 1.095404 log H_d)$$

where

 H_{i} = total tree height (feet) for a tree with dbh D_{i} (inches)

D_{max} = maximum dbh (inches) in the stand (determined from the dbh distribution)

 H_{d} = average height of dominants and codominants (feet)

T_s = number of trees per acre surviving at age A (years since planting)

log = logarithm base 10

The coefficient of determination (R 2) for this equation was 0.64 and the standard error of estimate (S $_{\rm v.x}$) was 0.041.

Individual Tree Volume Relationships

Data from the stem analysis trees were used to compare individual tree volume relationships for old-fields with those from cutover-sites. Again,

significant differences were detected but the differences were not sufficiently large to be of practical importance and they could not be related to hardwood variables. All stem analysis trees from cutover-site plantations were in the dominant or codominant crown classes, but the data set from old-field plantations contained all crown classes. (When comparing volume relationships between the two data sets, only data from dominant and codominant trees in old-fields were used.) Because of the small differences between the two data sets and because volume predictions are needed for all crown classes, the volume equations from Burkhart (1977), which were fitted to the old-field data from all crown classes, were used. The total cubic-foot volume equation is

$$V = 0.34864 + 0.00232 D^2H$$

where

V = cubic-foot volume outside bark of the stem from a 0.5 foot stump to tip

D = dbh (inches)

H = total tree height (feet)

Merchantable cubic volumes are derived by multiplying total volume by the appropriate ratio computed from

$$R = 1 - 0.32354 (D_t^{3.1579}/D^{2.7115})$$

where

R = ratio of merchantable cubic-foot volume to top
 diameter D_t with respect to total cubic-foot stem
 volume

 D_{t} = top diameter, outside bark (inches)

D = dbh (inches)

Diameter Distribution

Comparisons of dbh distributions in old-field and cutover-site plantations showed substantial differences. In general, cutover-site plantations had a smaller mean diameter and less basal area per acre than old-field plantations with the same age, average height of dominants and codominants, and number of pines surviving. Differences in the two data sets may be partially due to a number of factors, but the most important factor is probably the level of hardwood competition. The relatively large impact of hardwood competition on diameter growth as opposed to height growth is consistent with the general trend of competition effects being more pronounced on diameter than height development. We ascribed all differences in diameter distribution to differences in hardwood competition and developed adjustment factors to account for varying hardwood levels.

The pine diameters were assumed to be Weibull distributed. (For a discussion of the Weibull distribution see Bailey and Dell 1973.) The Weibull probability density function (pdf) for the random variable X can be written

$$f(x) = (c/b) [(x-a)/b]^{c-1} e^{-[(x-a)/b]^c}$$

where

$$x \ge a, b > 0, c > 0$$

This function has three parameters. The \underline{a} parameter is the "location" parameter; it indicates the lower end of the diameter distribution. "Spread" in the diameter distribution is controlled by the \underline{b} parameter, while the "shape" of the distribution is determined by \underline{c} .

There are many different methods for estimating the parameters of the Weibull distribution. In this analysis, the method of moments was applied. The equation for the i non-central moment of x is given by:

$$E(x^{\dagger}) = \int x^{\dagger} f(x_{1}, \underline{\theta}) dx$$

where $f(x_i, \underline{\theta})$ is a probability density function with parameters $\underline{\theta}$. In the case of forest diameter distributions, the first two moments are

$$E(x) = \overline{x}$$
 = the average diameter of the stand

$$E(x^2) = \overline{x^2} = B/[0.005454 T_s]$$

where B and T are basal area and number of trees per acre, respectively. Hence, the first two moments of the diameter distribution have stand-level interpretations that are meaningful in forestry practice and they are apparently directly affected by the level of hardwood competition.

Stand average estimates of the first k moments produce a system of k equations with k unknown parameters which can be solved to obtain estimates of the pdf parameters. In model HDWD, the location parameter \underline{a} was predicted outside the system of equations and expressions for the first two moments were solved to obtain estimates of \underline{b} and \underline{c} .

Initially, both moments (mean diameter and mean squared diameter) were adjusted as a function of the level of hardwood competition. These adjustments led to some inconsistent results — such as an increase, followed by a decrease in the variance of the diameter distribution of pine with an increasing proportion of the stand basal area in hardwood. At this point, we examined the data from the hardwood conversion/site preparation study in Fayette County, Alabama for trends in variance in the pine dbh distribution. The Fayette Study plots are all of the same age on a relatively uniform site, but the percent of stand basal area in hardwood varies from essentially 0 to 100. The Fayette Study plots showed that the

minimum and maximum diameters and the variance of the dbh distribution are not significantly related to the proportion of hardwood. When the predicted minimum diameter was not related to hardwood competition, however, the estimated minimum and average diameters became sufficiently close in stands with a high proportion of basal area in hardwood such that solutions for the \underline{b} and \underline{c} parameters could not be obtained. Consequently, it was necessary to adjust the minimum diameter downward as a function of hardwood competition.

The following equation was fitted to the old-field plantation data:

 $D_{min} = -4.10834 + 0.17828A + 1.04138 H_d/A + 947.466/T_s$ where

 $D_{min} = minimum dbh (inches)$

A = plantation age (years)

 H_d = average height of dominants and codominants (feet)

 T_s = number of pine trees per acre surviving at age A.

For the D equation the R^2 value was 0.75 and the standard error of estimate was 0.60. Estimated minimum diameters for old-field conditions were modified by the following function which was fitted to the plot data from plantations on cutover, site-prepared areas:

$$D_{\min_{CO}} = D_{\min_{OF}} e = -(B_H^{0.000427}(-0.5954141nB_L + 6.90102/A + 0.7382951n H_d))$$

where $D_{\min_{CO}}$ = minimum diameter (inches) for cutover-site plantation

D = minimum diameter (inches) for old-field plantation min_{OF}

 $\mathsf{B}_\mathsf{H}^{}$ = basal area (square feet per acre) of hardwood in the main canopy

B_L = basal area (square feet per acre) of loblolly pine

A = plantation age (years)

 H_d = average height of dominants and codominants (feet)

This equation had a standard error of estimate of 0.625. The location parameter $\underline{\mathbf{a}}$ was set to equal $\underline{\mathbf{D}}_{\min}/2$ and restricted to be greater than or equal to 0.5. That is, if predicted $\underline{\mathbf{D}}_{\min}/2$ is less than 0.5, $\underline{\mathbf{a}}$ is set equal to 0.5.

Noting that the variance (S^2) is defined as

$$s^2 = x^2 - (x)^2$$

it is clear that holding variance constant and adjusting one moment downward will result in a downward adjustment of the other moment as well. An equation was fitted to the data from old-field plantations to predict the variance of the dbh distribution (S 2 dbh). The variance values were subjected to logarithmic transformation to insure that predicted values would always be positive. The resulting equation is:

$$\ln (s_{dbh}^2) = 2.8366 - 0.2979 \ln T_s - 20.422/H_d + 0.0003872 A^2$$

where

 T_s = number of trees per acre surviving at age A

 H_d = average height of dominants and codominants (feet)

This equation had an R^2 value of 0.37 and standard error of estimate of 0.31.

The second moment of the dbh distribution from the old-field situation was adjusted downward as a function of the amount of hardwood competition. (Note that this is equivalent to an adjustment in basal area

because basal area in square feet per acre equals $(\overline{D^2})$ (T_S) (0.005454).) The following function was fitted by nonlinear least squares:

$$\frac{1}{D_{CO}^{2}} = \frac{1}{D_{OF}^{2}} = \frac{-(B_{H}^{0.912618}(-.00009688 B_{L}^{2} + 0.068787/A + .0045984 \ln H_{d}))}{(-.00009688 B_{L}^{2} + 0.068787/A + .0045984 \ln H_{d}))}$$

where D_{CO}^2 = mean squared dbh for cutover-site plantation

 D_{OF}^{2} = mean squared dbh for old-field plantation

 B_{H} = basal area (square feet per acre) of hardwood in the main canopy

 B_L = basal area (square feet per acre) of loblolly pine

A = plantation age (years)

 H_d = average height of dominants and codominants (feet) This equation, with a standard error of estimate of 0.241, is conditioned such that when B_H equals zero, D_{CO}^2 equals D_{OF}^2 . Values for D_{CO}^2 , B_H , B_L , A, and H_d came from plot observations in the cutover-site plantations. To compute the value of D_{OF}^2 for a given cutover-site plantation, assuming an

old-field plantation of the same age, average height of dominants and codominants and number of pines surviving, an estimate of the total stand basal area is needed. The following equation was fitted to plot data from old-field plantations:

 $\log B = 0.38749 + 1.121332 \log H_d + 0.975619/A - 92.324443/T_s$ where

B = basal area (square feet per acre)

 H_d = average height of dominants and codominants (feet)

A = plantation age (years)

 T_s = number of trees per acre surviving This equation showed an R^2 value of 0.82 and standard error of estimate of 0.046. The value for $\overline{D_{OF}^2}$ was computed for each of the cutover-site plots

by estimating the total stand basal area in pine for an old-field plantation using the above equation (independent variables are the observed values for $H_{\rm d}$, A, and $T_{\rm s}$ on the cutover-site plot) and noting that

$$\overline{D^2} = B/(0.005454 T_s)$$

After computing $\overline{D_{CO}^2}$ for a cutover-site plantation, the mean diameter (\overline{D}_{CO}) is computed as:

$$\bar{D}_{CO} = \sqrt{\frac{\bar{D}_{CO}^2 - s_{dbh}^2}{2}}$$

With this procedure, the variance of the dbh distribution of pine remains constant regardless of the amount of hardwood competition, but the mean diameter and mean squared diameter (and thus basal area) are reduced with increasing levels of hardwood.

Pine Survival

Hardwood competition effects seemed to be most pronounced on pine diameter growth and pine survival. Seventy-five of the 186 cutover-site plantations had valid observations on the numbers of trees planted per acre in addition to the number surviving at the time of plot installation. None of the old-field plots contained information on the number of trees planted. Thus the literature was searched for an appropriate survival curve for old-field plantations. After evaluating several alternative functions, the survival curve from Coile and Schumacher (1964) was

selected:

$$\begin{array}{ll} \log T_{s} &= \log T_{p} + (\text{A}/100) \; (2.2730\text{--}1.1103 \; \log T_{p}) \\ &\text{where } T_{p} = \text{number of trees per acre planted} \\ &T_{s} &= \text{number of trees per acre surviving on an old-field} \end{array}$$

at age A

Predicted number of trees surviving on an old-field was modified as a function of the amount of hardwood competition by fitting the following function with nonlinear least squares to data from the cutover-site plantation plots:

tation plots:
$$T_{\text{sco}} = T_{\text{sof}} = 10$$

$$T_{\text{sco}} = T_{\text{sof}} = 10$$

where T_{sco} = number of trees surviving per acre on a cutover site

 T_{sof} = number of trees surviving on an old-field (from survival function of Coile and Schumacher 1964)

 $^{8}B_{H}$ = percent of total basal area in hardwood in the main canopy

The standard error of estimate for this equation was 98.8. When $\%\,B_H$ is zero the modifier function is one and trees surviving on cutover-site is equal to that of an old-field.

Figure 2 shows survival curves for 800 trees per acre planted and various levels of hardwood competition.

Projection of Stand Composition

Percent of total basal area in hardwood in the main canopy is required input for model HDWD. When making projections through time, the behavior of the stand composition in terms of pine and hardwood basal areas needed to be considered. Both pines and hardwoods were measured at ages 11 and 24 in the Fayette Study. These data provided information on stand composition relationships in loblolly pine plantations after crown closure.

Plotting the percent basal area in hardwood at age 24 versus percent at age 11 showed a straight-line relationship with a slope near 1.0 (Figure 3). The fitted regression equation is

$$y = -3.4929 + 0.97107 \times$$

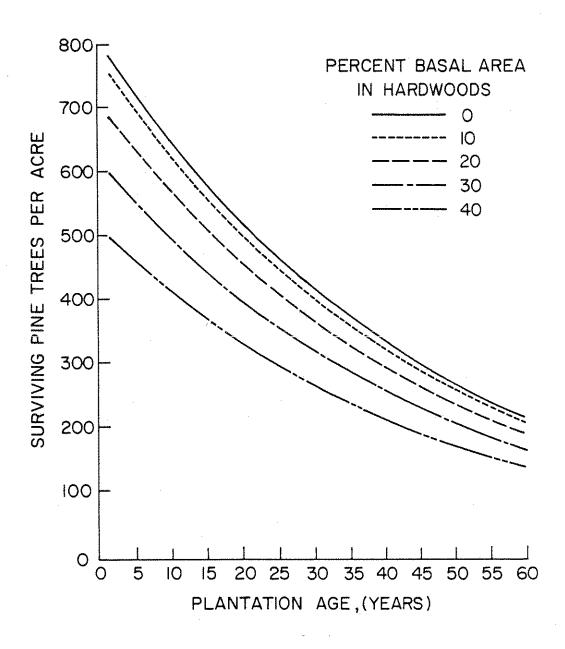


Figure 2. Surviving loblolly pine trees per acre as related to percent of basal area in hardwood. Figure is for 800 trees per acre planted.

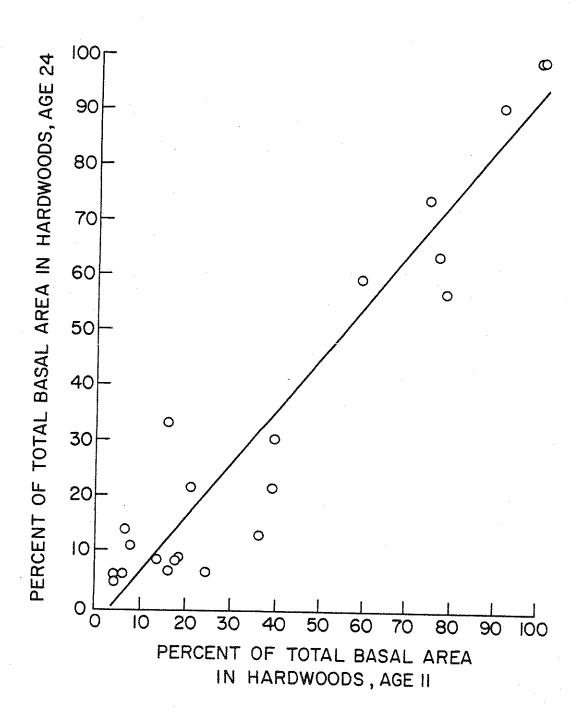


Figure 3. Relationship between percent basal area composed of hardwoods in the main canopy of loblolly pine plantations at ages 11 and 24 in a hardwood conversion/site preparation study, Fayette County, Alabama.

where y = percent basal area in hardwoods at age 24

x = percent basal area in hardwoods at age 11

The slope coefficient in this regression, which accounts for 92 percent of the variation in the dependent variable, is not significantly different from 1.0. Thus the hypothesis that the stand composition by basal area does not change after crown closure was accepted. A constant ratio of hardwood basal area to total basal area seems reasonable for projection periods of interest for loblolly pine plantations. The stability of this ratio can be observed in data presented in other studies (e.g., Lange 1951).

In model HDWD, the user must specify the percent or amount of basal area in hardwood in the main canopy at any point after crown closure. This percent is then assumed to remain constant.

MODEL VALIDATION

Plot observations from the hardwood conversion/site preparation study in Fayette County, Alabama, were used to validate model predictions. The Fayette Study plots are an independent data set (none of the information from the study was used in fitting any of the components of the model) that covers the full spectrum of hardwood competition. Thus, these data provided a rigorous evaluation of model adequacy. Figure 4 is a graph of the total cubic-foot volume in loblolly pine on the Fayette Study plots at age 24 versus percent of total basal area in hardwood. Superimposed on the data points plotted in Figure 4 is a line showing the model behavior for site index 60 feet (base age 25 years), 714 trees per acre planted, age 24 years and percent hardwood 0 to 100. The Fayette Study was planted with 714 trees per acre on an area that averaged 58.8 feet site index.

Overall, there is close agreement between the observed values and the model predictions. There is an apparent bias at very low levels of hardwood competition (less than 10 percent basal area in hardwood). The apparent underprediction for low levels of hardwood competition may be an artifact of the data used in model construction. Old-field data were used as the "zero percent hardwood" base line. These old-field plots represent extremely intensive site preparation. In many of the cutover-site plots very low levels of hardwood were present at the time of plot installation. The history of past hardwood competition levels was, however, not obtainable. Many of these plantations probably developed, prior to the time of plot installation, under considerably more hardwood competition than was present in the old fields. Thus, when temporary plot data from old fields were used as the base and data from cutover-site plantations were used to compute coefficients in the modifier function, there is a rather sharp drop at initial levels of basal area in hardwood. This apparent bias is not large, however, and it should not create any sizeable errors.

It should also be pointed out that the pine survival on the Fayette study plots with low amounts of hardwood was somewhat greater than

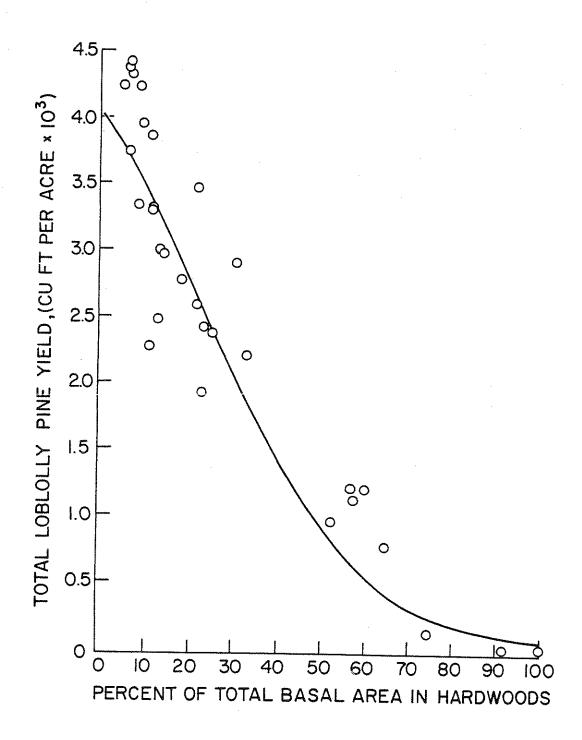


Figure 4. Total yield of loblolly pine versus percent of total stand basal area in hardwood from plot observations in a hardwood conversion/site preparation study in Fayette County, Alabama. The line represents predictions from program HDWD.

expected. The eight plots with less than 10 percent basal area in hardwoods averaged 459 surviving pines per acre at age 24. The average of the predicted values for these eight plots was 427 trees per acre. This difference between observed and predicted survival accounts for some, but not all, of the difference between the average of the observed and predicted yield in the 0 to 10 percent hardwood range.

Program HDWD was used to generate yield tables at age 30 for 800 trees per acre planted on site index 60 land with 0, 20, and 40 percent of the total stand basal area in hardwood (Table 2). From Table 2, one can note that with 20 percent of the basal area in hardwood, the number of trees, basal area and sawlog volume decrease 12, 28 and 40 percent, respectively, from the values for 0 percent basal area in hardwood. At 40 percent of the total basal area in hardwood, the decreases in number of trees, basal area and sawlog volume are 36, 64, and 81 percent, respectively, below that of the figures for 0 percent hardwood. Thus, as the proportion of the total stand basal area in hardwood increased, the decline in pine basal area and volume was even more marked because there were losses in both numbers of pine and in the average diameter of the pine that did survive. The decline in sawlog volume is especially dramatic because the entire pine dbh distribution is shifted to the left as a result of hardwood competition (Figure 5). As the percent basal area in hardwood increases, the variance of the pine dbh distribution remains the same but the mean shifts to the left, resulting in a somewhat more skewed distribution with relatively few trees in the larger diameter classes (Figure 5).

To further evaluate the "reasonableness" of model predictions, we computed the Relative Yield Total (RYT) using data from the Fayette Study. RYT is defined as (Harper 1977):

Plots with pure pine and pure hardwood in the Fayette Study were used to estimate yield of Species A and B in pure stands, respectively. A RYT value was then computed for all other plots with a pine-hardwood mixture. The average RYT value for the data at age 11 was 0.75; at age 24 the average was 0.80. Since these RYT values are less than 1.0 they imply mutual antagonism. Consequently, the model characteristic of pine basal area and volume decreases being greater than a proportional increase in hardwood basal area seems plausible. Langdon and Trousdell (1974) observed impacts of competing hardwoods on the growth of loblolly pine in natural stands that were of the same general order of magnitude as those predicted by model HDWD for loblolly pine plantations.

LIMITATIONS

Model HDWD should prove valuable for analyzing the biological and economic implications of controlling hardwood competition to various levels

Table 2. Stand and stock tables for the planted component of unthinned loblolly pine plantations at age 30 with 800 trees per acre planted on site index 60 (base age 25) land.

****	***************	,
STAND	ID STOCK TABLE FOR THE PLANTE	D PINE COMPONENT OF
	AN UNTHINNED LORIOLLY PINE	DI ANTATION

TREES PLANTED = 800.0 /AC SITE INDEX = 60.0 FT (BASE 25)
% BASAL AREA IN HARDWOOD = 0.0 AGE = 30

				CUBIC FO	OT VOLUMES	PER ACRE
DBH I NCHES	NUMBER TREES /ACRE	TOTAL HEIGHT FEET	BASAL AREA SQ FT/ACRE	TOTAL 1" +	PULPWOOD 5" + 4" TOP	SAWLOG 8" + 6" TOP
3 4 5 6 7 8 9 10 11 12 13 14	0.0 1.9 10.4 29.0 56.0 81.8 91.3 76.1 45.2 18.1 4.6 0.7	37.7 47.0 53.7 58.7 62.5 65.5 68.0 71.7 73.2 74.4 75.5	0.0 0.2 1.5 5.8 15.2 28.7 40.4 41.3 29.5 14.0 4.1 0.7	0.1 4.3 37.9 156.5 424.0 830.6 1199.8 1255.7 915.7 441.1 131.6 22.6	25.5 125.2 368.1 754.4 1119.8 1192.8 880.3 427.7 128.4 22.1	556.5 912.1 1029.4 788.3 392.7 120.0 21.0
TOTALS	414.9		181.4	5419.9	5044.3	3810 0

ARITHMETIC MEAN = 8.78 IN.

STAND AND STOCK TABLE FOR THE PLANTED PINE COMPONENT OF AN UNTHINNED LOBLOLLY PINE PLANTATION

TREES PLANTED = 800.0 /AC SITE INDEX = 60.0 FT (BASE 25)
% BASAL AREA IN HARDWOOD = 20.0 AGE = 30

				CUBIC FO	OT VOLUMES	PER ACRE
DBH INCHES	NUMBER TREES /ACRE	TOTAL HEIGHT FEET	BASAL AREA SQ FT/ACRE	TOTAL	PULPWOOD 5" + 4" TOP	SAWLOG 8" + 6" TOP
3 4 5 6 7 8 9 10 11 12	1.3 7.9 23.0 46.0 69.5 80.3 69.5 43.0 18.0 4.7 0.7	37.6 47.2 54.1 59.2 63.2 66.3 68.8 70.9 72.7 74.2 75.5	0.1 0.7 3.2 9.2 18.7 28.1 30.5 23.2 11.7 3.6 0.6	1.7 17.8 83.3 248.7 528.3 820.2 918.3 714.4 366.3 116.0 21.0	56.0 198.9 458.7 745.0 857.1 678.6 352.1 112.4 20.5	549.6 698.1 585.7 315.3 103.2 19.2
TOTALS	364.0		129.7	3836.2	3479.5	2271 1

ARITHMETIC MEAN = 7.90 IN.

Table 2. (continued).

	STAND AND	STOCK TABLE	************ FOR THE PLAD LOBLOLLY PI	NTED PINE	COMPONENT OF	
TREES PLANTED = 800.0 /AC SITE INDEX = 60.0 FT (BASE 25) BASAL AREA IN HARDWOOD = 40.0 AGE = 30						
				CUBIC FO	OT VOLUMES	PER ACRE
DBH I NCHES	NUMBER TREES /ACRE	TOTAL HEIGHT FEET	BASAL AREA SQ FT/ACRE	TOTAL	PULPWOOD 5" + 4" TOP	SAWLOG 8" + 6" TOP
2 3 4 5 6 7 8 9 10	0.8 8.1 23.8 42.9 56.1 55.6 41.7 23.2 9.3	23.3 37.6 47.8 55.2 60.8 65.1 68.5 71.3 73.6 75.5	0.0 0.4 2.2 5.9 11.1 14.8 14.4 10.1 5.0	0.5 10.2 52.9 155.4 306.5 429.5 313.9 159.0 55.0	104.4 245.1 373.2 394.7 293.0 151.0 52.8	291.1 238.7 130.3 47.3
TOTALS	264.0		65.7	1917.8	1614.4	707.5
ARITHMET	IC MÉAN = (5.53 IN.				

AKTIHMETTO MEAN = 6.53 IN.

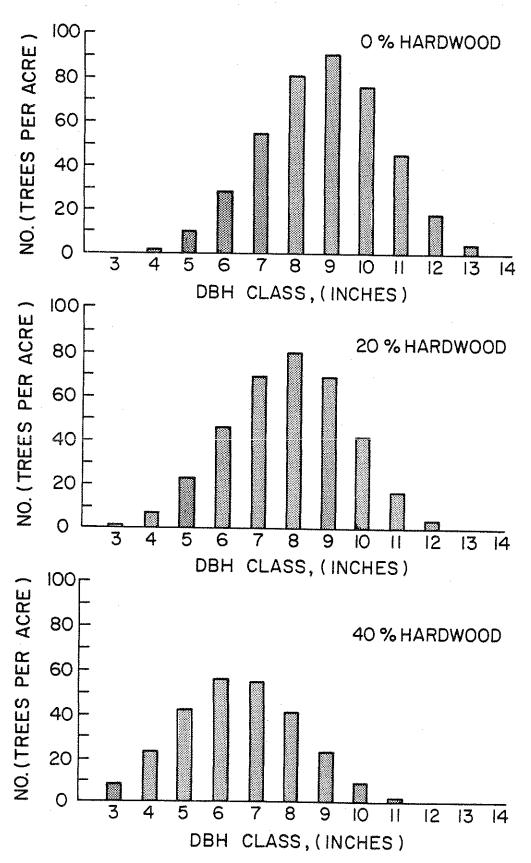


Figure 5. Pine dbh distribution for 0, 20, and 40 percent of the total stand basal area in hardwood. These histograms are for age 30 with 800 trees per acre planted on site index 60 (base age 25 years) land.

in loblolly pine plantations. There are several limitations regarding the types of analyses that can be performed. Specifically:

- 1. The levels of hardwood competition cannot be related to specific treatments. The proportion of basal area in hardwoods must be input by the users based on past experience and judgment.
- 2. The model does not account for hardwood species composition.

 Differential effects from competing hardwood vegetation might result from variations in species composition.
- 3. The model applies only to unthinned stands. If thinnings were carried out, some of the assumptions of the model (such as a constant ratio of hardwood basal area to total stand basal area) may not be valid.
- 4. Only analyses of hardwood competition in the main canopy can be performed. The effects of controlling understory vegetation and of controlling grasses and herbs at the time of seedling establishment cannot be evaluated. (It may be possible to model these effects through a shift in stand age, but more data are needed before recommendations can be made.)
- 5. Release treatments cannot be evaluated unless they are performed early in the life of the stand so that stand development in the released stand can be assumed to be the same as in a plantation that has the same level of hardwood competition but has not been released. If the release treatment has a direct effect on the pine such as causing mortality, a loss of a portion of a season's growth, or acting as a growth stimulant then adjustment in the pine variables (trees surviving, age, site index) should be made to reflect these effects.

Although much work remains to be done, model HDWD should be satisfactory for a wide range of analyses of the effects of hardwood competition on the growth and yield of loblolly pine plantations.

LITERATURE CITED

- Amateis, R. L. and H. E. Burkhart. Site index curves for loblolly pine plantations on cutover site-prepared lands. South. J. Appl. For. (in press).
- Bailey, R. L. and T. R. Dell. 1973. Quantifying diameter distributions with the Weibull function. Forest Sci. 19:97-104.
- Burkhart, H. E. 1977. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 1:7-9.
- Burkhart, H. E., D. C. Cloeren and R. L. Amateis. Yield relationships in unthinned loblolly pine plantations on cutover, site-prepared lands. South. J. Appl. For. (in press).
- Burkhart, H. E., R. C. Parker, M. R. Strub and R. G. Oderwald. 1972. Yields of old-field loblolly pine plantations. Division of Forestry and Wildlife Resources, Va. Polytech. Inst. & State Univ., FWS-3-72, 51 p.
- Coile, T. S. and F. X. Schumacher. 1964. Soil-site relations, stand structure, and yields of slash and loblolly pine plantations in the southern United States. T. S. Coile, Inc., Durham, N.C., 296 p.
- Harper, J. L. 1977. Population Biology of Plants. Academic Press, New York, 892 p.
- Langdon, O. G. and K. B. Trousdell. 1974. Increasing growth and yield of natural loblolly pine by young stand management. <u>In Proceedings</u> Symposium on Management of Young Pines, USDA Forest Service, Southeastern Area, State and Private Forestry, p. 288-296.
- Lange, K. D. 1951. Effects of clearcutting understory hardwoods on the growth of a shortleaf-Virginia pine stand. J. Forestry 49:176-177.
- Whipple, S. D. and E. H. White. 1965. Response of planted loblolly pine following various conversion methods. Auburn University Agricultural Experiment Station Bulletin 362, 26 p.

APPENDIX

USERS GUIDE FOR THE PROGRAM HDWD

HDWD is an interactive program providing yield predictions for the planted component of unthinned loblolly pine plantations containing competing hardwood vegetation. Versions of HDWD are written in BASIC for the IBM Personal Computer and FORTRAN for mainframe computers.

SYSTEM INFORMATION: The FORTRAN program is written in standard FORTRAN IV language and is acceptable with VS FORTRAN, H-EXTENDED FORTRAN, and FORTRAN G1 compilers. There is one IMSL routine, DGAMMA, that is needed from outside the program. Designated files are 10 for terminal prompts, questions and output, and 11 for storage of program output.

INPUT REQUIREMENTS: The input information required for HDWD is as follows: (1) number of loblolly pine planted (trees/ac), (2) site index base age 25 (ft), (3) percent of basal area in hardwood in the main canopy of the stand, and (4) age. Questions and prompts are given asking for each of the above information. Values from each response are checked for being within a reasonable range of the data on which the model is based. The bounds associated with each variable are as follows:

number of planted pine (trees/ac): 200-1600 site index base age 25 (ft): 40-90 % basal area in hardwood: 0-90 age: 10-45

Warning messages and prompts are given when an individual item or some combinations of input information is outside the ranges specified. The program allows predictions outside the above bounds if a feasible solution for the Weibull parameters exists. The program does not allow predictions for ages less than 10 years or for extreme input values.

After a stand and stock table is given for a set of input, the user is asked if another prediction is desired and what input information is to be saved or changed. Any response of 9999 terminates the program and 8888 restarts the program.

OUTPUT INFORMATION: After a set of input information is given, a stand and stock table is printed with the following information pertaining to the planted pine component of an unthinned stand:

Initial Input:
NUMBER OF PLANTED PINE (trees/ac)

SITE INDEX base age 25 (ft)

% BASAL AREA IN HARDWOOD

AGE

Subsequent Output: by 1 in. dbh classes and totals where appropriate,

NUMBER OF SURVIVING PINE (trees/ac)

TOTAL HEIGHT (ft)

TOTAL BASAL AREA of pine (sq ft/ac)

TOTAL YIELD of planted pine 1 in. dbh and greater (cu ft/ac)

PULPWOOD YIELD of planted pine 5 in. dbh and greater to a 4 in. top outside bark diameter (cu ft/ac)

SAWLOG YIELD of planted pine 8 in. dbh and greater to a 6 in. top outside bark diameter (cu ft/ac)

ARITHMETIC MEAN dbh (in.)

There will be minor differences between the BASIC and FORTRAN versions in output format and in actual basal area and yield estimates. The BASIC version uses dbh class midpoints for calculation of basal area and volume by class, while the FORTRAN version uses integration over the class bounds.

EXAMPLE:

Case 1: Given the following input:

number of planted pine (trees/ac):	800
site index base age 25 (ft):	60
% basal area in hardwood:	20
age:	25

the beginning output, questions, responses and subsequent output are given in Table 1.

Case 2: Another prediction is desired with basal area in hardwood changed to 40 %.

Case 3: Another prediction is desired with age changed to 30.

Case 4: Another prediction is desired with the number of planted pine changed to 900 and percent basal area in hardwood changed to 20%, but a prediction after that is not desired.

Table 1. Example input and output for program HDWD (using FORTRAN version).

Case 1.

VALUES FOR RESPONSES NEED TO BE IN ENGLISH UNITS (I.E., FEET AND TREES/ACRE). A RESPONSE CAN BE ENTERED AS EITHER INTEGER- OR REAL-VALUED.

ENTER: 9999 AT ANY TIME TO TERMINATE THE PROGRAM, 8888 AT ANY TIME TO RESTART THE PROGRAM.

ENTER THE NUMBER OF LOBLOLLY PLANTED (TREES/ACRE).

- ENTER SITE INDEX BASE AGE 25 (FEET).
- ENTER PERCENT OF BASAL AREA IN HARDWOODS (E.G., 10,20).

ENTER STAND AGE.
AGE MUST BE GREATER THAN OR EQUAL TO 10 YEARS.

> 25

TREES PLANTED = 800.0 /AC SITE INDEX = 60.0 FT (BASE 25)
% BASAL AREA IN HARDWOOD = 20.0 AGE = 25

				CUBIC FO	OT VOLUMES	PER ACRE
DBH INCHES	NUMBER TREES /ACRE	TOTAL HEIGHT FEET	BASAL AREA SQ FT/ACRE	TOTAL	PULPWOOD 5" + 4" TOP	SAWLOG 8" + 6" TOP
2 3 4 5 6 7 8 9 10 11 12	0.2 3.8 17.1 43.2 75.9 97.1 88.5 54.9 6.5	23.1 43.3 49.1 53.6 59.3 613.5 64.8	0.0 0.2 1.6 6.1 15.1 26.0 30.8 23.7 11.2 2.9 0.4	0.1 4.6 35.5 142.4 370.2 661.8 805.6 306.0 81.5 10.9	95.7 296.2 574.6 731.7 595.1 290.6 78.3 10.5	539.7 484.7 250.8 70.1 9.7
TOTALS	406.1		117.9	3056.2	2672.8	1355.1

ARITHMETIC MEAN = 7.12 IN

Table 1. (continued)

Case 2.

THE PREVIOUS INPUT WAS AS FOLLOWS:

1	TREES PER ACRE	800.0
2	SITE INDEX	60.0
	% BASAL AREA IN HARDWOOD	20.0
4	AGE	25

IF ANOTHER PROJECTION IS DESIRED,
ENTER THE NUMBERED ITEM TO BE CHANGED,
ENTER THE NUMBER 5 IF MORE THAN 1 ITEM IS TO BE CHANGED,
OTHERWISE, ENTER THE NUMBER 6 TO TERMINATE THE PROGRAM.

> 3

ENTER PERCENT OF BASAL AREA IN HARDWOODS (E.G., 10,20).

TREES PLANTED = 800.0 /AC SITE INDEX = 60.0 FT (BASE 25)
% BASAL AREA IN HARDWOOD = 40.0 AGE = 25

CUBIC FOOT VOLUMES PER ACRE PULPWOOD 5" + 4" TOP TOTAL 1" + SAWLOG 8" + 6" TOP NUMBER TOTAL BASAL DBH TREES HEIGHT AREA /ACRE FEET SQ FT/ACRE INCHES 22.6 2.3 0.1 35.2 3 4 14.9 17.5 0.8 78.0 37.9 3.4 137.0 279.5 203.8 50.3 61.3 8.5 6 7 55.0 13.9 349.4 70.5 58.7 351.0 58.1 15.4 404.3 312.7 209.5 8 61.5 11.5 284.0 5.6 1.7 9 157.2 146.7 119.5 10 65.8 49.3 46.9 40.5 60.9 1573.8 1245.1 369.5 TOTALS 294.7

ARITHMETIC MEAN = 5.95 IN

Table 1. (continued)

Case 3.

THE PREVIOUS INPUT WAS AS FOLLOWS:

1	TREES PER ACRE	800.0
2	SITE INDEX	60.0
3	% BASAL AREA IN HARDWOOD	40.0
	AGE	25

IF ANOTHER PROJECTION IS DESIRED,
ENTER THE NUMBERED ITEM TO BE CHANGED,
ENTER THE NUMBER 5 IF MORE THAN 1 ITEM IS TO BE CHANGED,
OTHERWISE, ENTER THE NUMBER 6 TO TERMINATE THE PROGRAM.

> 1

ENTER STAND AGE.

AGE MUST BE GREATER THAN OR EQUAL TO 10 YEARS.

> 30

TREES PLANTED = 800.0 /AC SITE INDEX = 60.0 FT (BASE 25)
% BASAL AREA IN HARDWOOD = 40.0 AGE = 30

CUBIC FOOT VOLUMES PER ACRE NUMBER TOTAL PULPWOOD 5" + 4" TOP SAWLOG 8" + 6" TOP BASAL TOTAL DBH TREES HEIGHT AREA INCHES /ACRE FEET SQ FT/ACRE 23.3 37.6 0.8 0.0 0.5 3 8.1 0.4 10.2 23.8 2.2 5.9 52.9 155.4 47.8 42.9 55.2 60.8 5 6 7 104.4 56.1 245.1 373.2 11.1 306.5 65.1 429.9 434.5 14.8 8 68.5 14.4 394.7 291.1 9 71.3 10.1 313.9 293.0 238.7 10 9.3 73.6 5.0 159.0 151.0 130.3 2.6 11 1.7 55.0 52.8 47.3 TOTALS 264.0 65.7 1917.8 1614.4 707.5

ARITHMETIC MEAN = 6.53 IN

Table 1. (continued) Case 1.

THE PREVIOUS INPUT WAS AS FOLLOWS:

1	TREES PER ACRE	800.0
2	SITE INDEX ,	60.0
3	% BASAL AREA IN HARDWOOD	40.0
4	AGE	30

IF ANOTHER PROJECTION IS DESIRED, ENTER THE NUMBERED ITEM TO BE CHANGED, ENTER THE NUMBER 5 IF MORE THAN 1 ITEM IS TO BE CHANGED, OTHERWISE, ENTER THE NUMBER 6 TO TERMINATE THE PROGRAM.

ENTER THE NUMBER OF LOBLOLLY PLANTED (TREES/ACRE).

ENTER SITE INDEX BASE AGE 25 (FEET).

ENTER PERCENT OF BASAL AREA IN HARDWOODS (E.G., 10,20).

ENTER STAND AGE. AGE MUST BE GREATER THAN OR EQUAL TO 10 YEARS.

******************* STAND AND STOCK TABLE FOR THE PLANTED PINE COMPONENT OF AN UNTHINNED LOBLOLLY PINE PLANTATION

= 900.0 /AC TREES PLANTED SITE INDEX = 60.0 FT (BASE 25)

% BASAL AREA IN HARDWOOD = 20.0 AGE = 30

				CUBIC FO	OT VOLUMES	PER ACRE
DBH INCHES	NUMBER TREES /ACRE	TOTAL HEIGHT FEET	BASAL AREA SQ FT/ACRE	TOTAL 1" +	PULPWOOD 5" + 4" TOP	SAWLOG 8" + 6" TOP
3 4 5 6 7 8 9 10 11 12 13	1.6 9.6 27.3 53.4 78.5 87.7 72.4 42.2 16.4 3.9	38.0 47.3 59.4 63.3 66.4 71.8 74.3 75.5	0.1 0.9 3.8 10.7 21.2 30.6 31.8 22.8 10.6 3.0	2.2 21.7 99.2 289.5 598.1 896.0 957.4 701.6 333.6 96.3 15.6	66.7 231.5 519.3 813.8 893.6 666.4 320.7 93.3 15.2	600.3 727.9 575.1 287.2 85.7
TOTALS	393.8		136.0	4011.2	3620.7	2290.4

ARITHMETIC MEAN = 7.77 IN

THE PREVIOUS INPUT WAS AS FOLLOWS:

1	TREES PER ACRE	900.0
2	SITE INDEX	60.0
	% BASAL AREA IN HARDWOOD	20.0
Ц	AGE	30

IF ANOTHER PROJECTION IS DESIRED, ENTER THE NUMBERED ITEM TO BE CHANGED, ENTER THE NUMBER 5 IF MORE THAN 1 ITEM IS TO BE CHANGED, OTHERWISE, ENTER THE NUMBER 6 TO TERMINATE THE PROGRAM.

6

THE PROGRAM HAS BEEN TERMINATED BY THE USER.

FORTRAN LISTING

```
C#
                                                                                    *DHA00020
 Č*
        A GROWTH AND YIELD PREDICTION MODEL FOR THE PLANTED COMPONENT
                                                                                    *DHA00030
        OF UNTHINNED LOBLOLLY PINE PLANTATIONS CONTAINING HARDWOODS.
 C#
                                                                                    *DHA00040
 C#
                                                                                    *DHA00050
C#
                     BY PETER T. SPRINZ
                                               VPI&SU
                                                           FWS-3-84
                                                                                    *DHA00060
C#
                                                                                    #DHA00070
DHA00090
С
                    RESPONSES AND OUTPUT ARE SENT TO TERMINAL BY FILE 10.
                                                                                     DHA00100
С
       OUTPUT ONLY IS WRITTEN TO FILE 11.
                                                                                     DHA00110
С
                                                                                     DHA00120
DHA00140
        IMPLICIT REAL*8 (Z)
       DIMENSION DCL(50), BCL(50), VCL(50), PCL(50), SCL(50)
EXTERNAL TREEHT, ZFCV, VDIST, BDIST
COMMON/AREA1/DAVG, D2AVG, A, B, C
                                                                                     DHA00150
                                                                                     DHA00160
                                                                                     DHA00170
                                                                                     DHA00180
       COMMON/AREA2/HGTD, TWS, TOF, DMAX, AGE
                                                                                     DHA00190
C
     WRITE(10,5)
WRITE(10,6)
5 FORMAT(/80('*'),/12X,
&'A GROWTH AND YIELD PREDICTION MODEL FOR THE PLANTED COMPONENT'
DHA00230
DHA00240
&/13X,'OF UNTHINNED LOBLOLLY PINE PLANTATIONS CONTAINING HARDWOOD.'DHA00250
&/,80('*'),//
&T3,'VALUES TO RESPONSES NEED TO BE IN ENGLISH UNITS (I.E., FEET'
DHA00270
DHA00280
DHA00280
FORMAT(/2X,
DHA00290
                                                                                     DHA00200
                                                                                     DHA00290
     &'A RESPONSE CAN BE ENTERED AS EITHER INTEGER- OR REAL-VALUED.',// DHA00300 &2X,'ENTER: 9999 AT ANY TIME TO TERMINATE THE PROGRAM,' DHA00310 &/,10X,'8888 AT ANY TIME TO RESTART THE PROGRAM.'//,80('-'),/) DHA00320
С
                                                                                     DHA00330
     7 RESP1=5.
                                                                                     DHA00340
C
                                                                                     DHA00350
Č*
                                                                                   *DHA00370
       INPUT DATA
                                                                                   *DHA00380
C#
                                                                                   *DHA00390
DHA00410
  8 IF(RESP1.GE.2..AND.RESP1.LE.4.)GO TO 20
10 WRITE(10,100)
100 FORMAT(5X, 'ENTER THE NUMBER OF LOBLOLLY
READ(10,*)TP
                                                                                    DHA00420
                                                                                    DHA00430
                   'ENTER THE NUMBER OF LOBLOLLY PLANTED (TREES/ACRE).')
                                                                                    DHA00440
                                                                                    DHA00450
      IF(TP.GE.200..AND.TP.LE.1600.)GO TO 20
IF(TP.EQ.9999.)GO TO 9999
CALL RESPS1(TP)
                                                                                    DHA00460
                                                                                    DHA00470
                                                                                    DHA00480
  WRITE(10,104)
104 FORMAT(5X, DATA RANGE IS FROM 200 TO 1600 TREES/ACRE.')
                                                                                    DHA00490
                                                                                    DHA00500
       1F(TP.GE.4000..OR.TP.LE.50.)GO TO 8
                                                                                    DHA00510
       CALL RESPS2(RESP)
                                                                                    DHA00520
      IF(RESP.EQ.1.)GO TO 8
IF(RESP.EQ.2.)GO TO 20
                                                                                    DHA00530
                                                                                    DHA00540
       IF(RESP.EQ.9999.)GO TO 9999
                                                                                    DHA00550
```

```
IF(RESP.EQ.8888.)GO TO 9998
                                                                                                                               DHA00560
C
                                                                                                                               DHA00570
     20 IF(RESP1.EQ.1..OR.RESP1.EQ.3..OR.RESP1.EQ.4.)GO TO 30
                                                                                                                               DHA00580
   20 IF(RESP1.EQ.1..OR.RESP1.EQ.3..OR.RESP1.EQ.4.)GO TO 30
WRITE(10,200)
200 FORMAT(5X, 'ENTER SITE INDEX BASE AGE 25 (FEET).')
READ(10,*)S1
IF(SI.GE.40..AND.SI.LE.90.)GO TO 30
IF(SI.EQ.9999.)GO TO 9999
IF(SI.EQ.8888.)GO TO 9998
CALL RESPS1(SI)
WRITE(10,201)
201 FORMAT(5X, 'DATA RANGE FOR SITE INDEX IS FROM 40 TO 90 FEET.'/)
IF(SI.GE.200..OR.SI.LE.20.)GO TO 20
CALL RESPS2(RESP)
                                                                                                                               DHA00590
                                                                                                                               DHA00600
                                                                                                                               DHA00610
                                                                                                                               DHA00620
                                                                                                                               DHA00630
                                                                                                                               DHA00640
                                                                                                                               DHA00650
                                                                                                                               DHA00660
                                                                                                                               DHA00670
                                                                                                                               DHA00680
          CALL RESPS2(RESP)
                                                                                                                               DHA00690
          IF(RESP.EQ.1.)GO TO 20
IF(RESP.EQ.2.)GO TO 30
IF(RESP.EQ.9999.)GO TO 9999
IF(RESP.EQ.8888.)GO TO 9998
                                                                                                                               DHA00700
                                                                                                                               DHA00710
                                                                                                                               DHA00720
                                                                                                                               DHA00730
                                                                                                                               DHA00740
     30 IF(RESP1.LE.2..OR.RESP1.EQ.4)G0 TO 50
                                                                                                                               DHA00750
          WRITE(10,301)
                                                                                                                               DHA00760
   301 FORMAT(5X,
                                                                                                                               DHA00770
        & ENTER PERCENT OF BASAL AREA IN HARDWOODS (E.G., 10,20). 1)
                                                                                                                               DHA00780
          READ(10, #) PERBAH
                                                                                                                               DHA00790
          IF(PERBAH.GE.O..AND.PERBAH.LE.90.)GO TO 50
IF(PERBAH.EQ.9999.)GO TO 9999
IF(PERBAH.EQ.8888.)GO TO 9998
CALL RESPS1(PERBAH)
                                                                                                                               DHA00800
                                                                                                                               DHA00810
                                                                                                                               DHA00820
                                                                                                                               DHA00830
   WRITE(10,302)
302 FORMAT(5X, DATA RANGE IS 0 TO 90 PERCENT. )
IF(PERBAH.GT.100..OR.PERBAH.LT.0.)GO TO 30
                                                                                                                               DHA00840
                                                                                                                               DHA00850
                                                                                                                               DHA00860
     31 CALL RESPS2(RESP)
IF(RESP.EQ.1.)GO TO 30
IF(RESP.EQ.2.)GO TO 50
IF(RESP.EQ.9999.)GO TO 9999
IF(RESP.EQ.8888.)GO TO 9998
                                                                                                                               DHA00870
                                                                                                                               08800AHD
                                                                                                                               DHA00890
                                                                                                                               DHA00900
                                                                                                                               DHA00910
                                                                                                                               DHA00920
   DHA00930
                                                                                                                               DHA00940
                                                                                                                               DHA00950
                                                                                                                               DHA00960
                                                                                                                               DHA00970
           TAGE=AGE+.5
                                                                                                                               DHA00980
           IF(AGE.GE.10..AND.AGE.LE.45.)GO TO 80
                                                                                                                              DHA00990
          IF(AGE.EQ.9999.)GO TO 9999
IF(AGE.EQ.8888.)GO TO 9998
                                                                                                                              DHA01000
                                                                                                                              DHA01010
  IF(AGE.EQ.8888.)GO TO 9998
CALL RESPS1(AGE)
WRITE(10,501)
501 FORMAT(5X, DATA RANGE IS FROM 10 TO 45 YEARS.')
IF(AGE.GE.100..OR.AGE.LT.10.)GO TO 50
CALL RESPS2(RESP)
IF(RESP.EQ.1.)GO TO 50
IF(RESP.EQ.2.)GO TO 80
IF(RESP.EQ.9999.)GO TO 9999
IF(RESP.EQ.8888.)GO TO 9998
                                                                                                                              DHA01020
                                                                                                                              DHA01030
                                                                                                                              DHA01040
                                                                                                                              DHA01050
                                                                                                                               DHA01060
                                                                                                                               DHA01070
                                                                                                                              DHA01080
                                                                                                                              DHA01090
                                                                                                                              DHA01100
```

```
DHA01110
C#
                                                                          *DHA01130
C*
       COMPUTE STAND ATTRIBUTES
                                                                          *DHA01140
C#
                                                                          *DHA01150
DHA01170
C*****COMPUTE OLD FIELD SURVIVING TREES/ACRE(COILE AND SCHUMACHER 1964) DHA01180
                                                                           DHA01190
   80 TOF=ALOG10(TP)+(AGE/100.)*(2.1346+.1384-1.1103*ALOG10(TP))
                                                                           DHA01200
      TOF=10. **TOF
                                                                           DHA01210
                                                                           DHA01220
C*****COMPUTE AVERAGE HEIGHT OF THE DOMINANTS AND CODOMINANTS
                                                                           DHA01230
      (AMATEIS AND BURKHART 1984)
                                                                           DHA01240
                                                                           DHA01250
      HGTD=ALOG($!)*((AGE/25.)**0.10283)*
                                                                           DHA01260
            EXP(-2.1676*((1./AGE)-(1./25.)))
                                                                           DHA01270
      HGTD=EXP(HGTD)
                                                                           DHA01280
                                                                           DHA01290
C*****COMPUTE OLD FIELD BASAL AREA/ACRE
                                                                           DHA01300
                                                                           DHA01310
      BAP=10.**(.38749+1.121332*ALOG10(HGTD)+.975619/AGE-92.324443/TOF) DHA01320
      BAH=BAP*PERBAH/100.
                                                                           DHA01330
      BAL=BAP-BAH
                                                                           DHA01340
      IF(BAL.LE.O.)GO TO 91
                                                                           DHA01350
C
                                                                           DHA01360
   ****COMPUTE NUMBER OF TREES/ACRE ADJUSTED BY BASAL AREA IN HARDWOOD
C#
                                                                           DHA01370
                                                                           DHA01380
      TWS=TOF*10.**(-(PERBAH/100.)**1.781844)
                                                                           DHA01390
                                                                           DHA01400
C*****COMPUTE VARIANCE OF DBH (VAR), AVERAGE SQUARED DIAMETER (OD2AVG), C AND MINIMUM DIAMETER (OFMIN) FROM OLD FIELD INFORMATION; AND THEN C ADJUST OD2AVG AND OFMIN BY THE AMOUNT OF BASAL AREA IN HARDWOOD.
                                                                           DHA01410
                                                                          DHA01420
                                                                           DHA01430
C
                                                                           DHA01440
      VAR=EXP(2.8366-.2979*ALOG(TOF)-20.422/HGTD+.0003872*AGE**2.)
                                                                           DHA01450
      OD2AVG=BAP/(.005454*TOF)
                                                                           DHA01460
      OFMIN=-4.10834+0.17828*AGE+1.04138*HGTD/AGE+947.466/TOF
                                                                           DHA01470
                                                                           DHA01480
C*****CALCULATE THE ADJUSTMENT FUNCTIONS BASED ON THE AMOUNT OF BASAL
                                                                           DHA01490
      AREA IN HARDWOOD.
                                                                           DHA01500
                                                                           DHA01510
      IF(BAH.GT.O.) AD2AVG=-(BAH**.912618)*(-.00009688*BAL
                                                                           DHA01520
                         +.068787/AGE+.0045984#ALOG(HGTD))
     8¢
                                                                           DHA01530
      IF(BAH.GT.O.) AD2AVG=EXP(AD2AVG)
IF(BAH.EQ.O.) AD2AVG=1.
                                                                          DHA01540
                                                                          DHA01550
      IF(BAH.GT.O.) AMIN=-(BAH**.000427)*(-.595414*ALOG(BAL)
                                                                          DHA01560
                         +6.90102/AGE+.738295*ALOG(HGTD))
                                                                          DHA01570
      IF(BAH.GT.O.) AMIN=EXP(AMIN)
                                                                          DHA01580
      IF(BAH.EQ.O.) AMIN=1.
                                                                          DHA01590
                                                                          DHA01600
  ****MODIFY THE OLD FIELD ESTIMATES OF THE MOMENTS TO REPRESENT WOOD
                                                                          DHA01610
CCC
      SITE CONDITIONS CONTAINING A SPECIFIED AMOUNT OF BASAL AREA IN
                                                                          DHA01620
      HARDWOOD.
                                                                          DHA01630
                                                                          DHA01640
      D2AVG=OD2AVG*AD2AVG
                                                                          DHA01650
```

```
DMIN=OFMIN*AMIN
                                                                                             DHA01660
       DAVG2=D2AVG-VAR
IF(DAVG2.LE.O.)G0 TO 91
                                                                                             DHA01670
                                                                                             DHA01680
       DAVG=SQRT(DAVG2)
                                                                                             DHA01690
                                                                                             DHA01700
C*****CALCULATE ESTIMATES OF THE WEIBULL PARAMETERS
                                                                                             DHA01710
                                                                                             DHA01720
    90 A = DMIN*0.5
                                                                                             DHA01730
        IF(A.LE.0.5) A = 0.5
                                                                                             DHA01740
       BL=1.
                                                                                             DHA01750
        TL=5.
                                                                                             DHA01760
C
                                                                                             DHA01770
       CALL WEIB(DAVG, D2AVG, A, BL, TL, B, C, X1P, X2P, 1ER) IF(B.LE.O.)GO TO 91 IF(DAVG.LE.A)GO TO 91
                                                                                             DHA01780
                                                                                             DHA01790
                                                                                             DHA01800
        IF(IER.EQ.1.OR.IER.EQ.3)GO TO 91
                                                                                             DHA01810
    GO TO 92
91 WRITE(10,901)
                                                                                             DHA01820
                                                                                             DHA01830
  901 FORMAT(/5X
                                                                                             DHAO1840
      &'THE COMBINATION OF INPUT RESULTED IN EITHER NO SOLUTION OR',/5X, DHA01850
&'AN ILLOGICAL SOLUTION OF THE B OR C WEIBULL PARAMETERS.'/) DHA01860
       GO TO 99
                                                                                             DHA01870
                                                                                             DHA01880
C#
                                                                                           *DHA01900
C#
       GIVEN THE PARAMETER ESTIMATES, DERIVE THE STAND TABLE
                                                                                           *DHA01910
C#
                                                                                           *DHA01920
DHA01940
C*****DETERMINE THE LARGEST DIAMETER CLASS(DMAX) AS THE LAST C DIAMETER CLASS CONTAINING AT LEAST .5 TREE PER ACRE.
                                                                                             DHA01950
                                                                                             DHA01960
                                                                                             DHA01970
   92 1=A+0.5
                                                                                             DHA01980
       DL=A+0.01
                                                                                             DHA01990
       DU = 1 + 0.5
                                                                                             DHA02000
    94 DDCL=TWS*(EXP(-(((DL-A)/B)**C))-EXP(-(((DU-A)/B)**C)))
                                                                                             DHA02010
        IF(FLOAT(1).GT.DAVG.AND.DDCL.LT.0.5)GO TO 95
                                                                                             DHA02020
       DMÁX=FLOÁT(1)
                                                                                             DHA02030
        |=|+1
                                                                                             DHA02040
       DU=1+0.5
                                                                                             DHA02050
       DL=1-0.5
                                                                                             DHA02060
       GO TO 94
                                                                                             DHA02070
   95 CONTINUE
                                                                                             DHA02080
С
                                                                                             DHA02090
  WRITE(10,905)TP,SI,PERBAH,IAGE
WRITE(11,905)TP,SI,PERBAH,IAGE
905 FORMAT(//74('*'),/9X,
&'STAND AND STOCK TABLE FOR THE PLANTED PINE COMPONENT OF',/,18X,
&'AN UNTHINNED LOBLOLLY PINE PLANTATION',/,74('-'),/,T2,
&'TREES PLANTED =',F6.1,'/AC',T42,
&'SITE INDEX =',F6.1,' FT (BASE 25)'
&/T2,'% BASAL AREA IN HARDWOOD =',F6.1,T42,'AGE =',I4,/)
                                                                                             DHA02100
                                                                                             DHA02110
                                                                                             DHA02120
                                                                                            DHA02130
                                                                                             DHA02140
                                                                                             DHA02150
                                                                                             DHA02160
                                                                                             DHA02170
C
                                                                                             DHA02180
       WRITE(10,907)
                                                                                             DHA02190
       WRITE(11,907)
                                                                                             DHA02200
```

```
907 FORMAT(1X,T45, 'CUBIC FOOT VOLUMES PER ACRE', /,T43,31('-'), /,T12, &'NUMBER',T23, 'TOTAL',T35, 'BASAL',T46, 'TOTAL',T55, 'PULPWOOD',T67, &'SAWLOG', /,T4, 'DBH',T12, 'TREES',T23, 'HEIGHT',T35, 'AREA',T46, &'1" +',T57,'5" +',T68,'8" +',/,1X, 'INCHES',T12,'/ACRE',T24, &'FEET',T32,'SQ FT/ACRE',T56,'4" TOP',T67,'6" TOP',/)
                                                                                                             DHA02210
                                                                                                              DHA02220
                                                                                                              DHA02230
                                                                                                              DHA02240
                                                                                                             DHA02250
                                                                                                             DHA02260
C*****COMPUTE THE PREDICTED DISTRIBUTIONS
                                                                                                             DHA02270
                                                                                                             DHA02280
         DSUM = 0.
                                                                                                             DHA02290
         BSUM = 0.
                                                                                                             DHA02300
         VSUM = 0.
                                                                                                             DHA02310
         PSUM = 0.
                                                                                                             DHA02320
         SSUM = 0.
                                                                                                             DHA02330
         ASUM = 0.
                                                                                                             DHA02340
С
                                                                                                             DHA02350
              A + 0.5
                                                                                                             DHA02360
         DL = A + 0.01
                                                                                                             DHA02370
         DU = 1 + 0.5
                                                                                                             DHA02380
    96 DCL(1)=TWS*(EXP(-(((DL-A)/B)**C))-EXP(-(((DU-A)/B)**C)))
                                                                                                             DHA02390
         IF(DCL(1),LT.0.)DCL(1)=0.
                                                                                                             DHA02400
         DIAM=1
                                                                                                             DHA02410
         HGT=TREEHT(DIAM)
IF (FLOAT(I).GT.DMAX)GO TO 97
                                                                                                             DHA02420
                                                                                                             DHA02430
         BCL(I) = TWS*GAUS(BDIST, DL, DU)
VCL(I) = TWS*GAUS(VDIST, DL, DU)
                                                                                                             DHA02440
                                                                                                             DHA02450
         IF(VCL(1).LT..05)GO TO 98
                                                                                                             DHA02460
                                                                                                             DHA02470
   ****CALCULATE MERCHANTABLE VOLUMES AS A RATIO OF TOTAL VOLUME
C#
                                                                                                             DHA02480
С
         (BURKHART 1977)
                                                                                                             DHA02490
С
                                                                                                             DHA02500
        PCL(1) = VCL(1)*(1.+(-.32354*((4.**3.1579)/(DIAM**2.7115))))
SCL(1) = VCL(1)*(1.+(-.32354*((6.**3.1579)/(DIAM**2.7115))))
DSUM = DSUM + DCL(1)
                                                                                                             DHA02510
                                                                                                             DHA02520
                                                                                                             DHA02530
         BSUM = BSUM + BCL(1)
                                                                                                             DHA02540
        VSUM = VSUM + VCL(1)
ASUM = ASUM + FLOAT(1) + DCL(1)
                                                                                                             DHA02550
                                                                                                             DHA02560
         IF(I.GE.5)PSUM = PSUM + PCL(I)
                                                                                                             DHA02570
         IF(1.GE.8)SSUM = SSUM + SCL(1)
                                                                                                             DHA02580
С
                                                                                                             DHA02590
         IF(!.GE.8.)WRITE(10,908)!,DCL(!),HGT,BCL(!),VCL(!),PCL(!),SCL(!)
IF(!.GE.8.)WRITE(11,908)!,DCL(!),HGT,BCL(!),VCL(!),PCL(!),SCL(!)
                                                                                                             DHA02600
                                                                                                             DHA02610
   908 FORMAT(1X, 14,6(5X, F6.1))
                                                                                                             DHA02620
        IF(I.GE.5.AND.I.LT.8.)WRITE(10,909)I,DGL(I),HGT,
BCL(I),VCL(I),PCL(I)
IF(I.GE.5.AND.I.LT.8.)WRITE(11,909)I,DCL(I),HGT,
                                                                                                             DHA02630
                                                                                                             DHA02640
                                                                                                             DHA02650
                                              BCL(1), VCL(1), PCL(1)
                                                                                                            DHA02660
  909 FORMAT(1X,14,5(5X,F6.1))

1F(1.LT.5.)WRITE(10,910)I,DCL(I),HGT,BCL(I),VCL(I)

1F(1.LT.5.)WRITE(11,910)I,DCL(I),HGT,BCL(I),VCL(I)
                                                                                                            DHA02670
                                                                                                            DHA02680
                                                                                                            DHA02690
  910 FORMAT(1X, 14, 4(5X, F6.1))
                                                                                                            DHA02700
                                                                                                            DHA02710
    98
          ==
                                                                                                            DHA02720
        DU = 1 + 0.5
                                                                                                            DHA02730
        DL = 1 - 0.5
                                                                                                            DHA02740
        GO TO 96
                                                                                                            DHA02750
```

```
97 CONTINUE
                                                                                        DHA02760
       ARTH=ASUM/DSUM
                                                                                        DHA02770
  WR!TE(10,911) DSUM, BSUM, VSUM, PSUM, SSUM, ARTH DHA02780
WRITE(11,911) DSUM, BSUM, VSUM, PSUM, SSUM, ARTH DHA02790
911 FORMAT(1X,72('-'),/1X,'TOTALS',2X,F7.1,15X,F7.1,4X,F7.1,4X,
&F7.1,4X,F7.1,//,1X,'ARITHMETIC MEAN =',F5.2,1X,'IN.',//,74('*'),/)DHA02810
  99 WRITE(10,912)TP,SI,PERBAH,IAGE
912 FORMAT(//5X, THE PREVIOUS INPUT WAS AS FOLLOWS: 1/8X,
& 1 TREES PER ACRE .............., F6.1,/8X,
                                                                                        DHA02820
                                                                                        DHA02830
     DHA02840
                                                                                        DHA02850
                                                                                        DHA02860
                                                                                        DHA02870
                                                                                        DHA02880
                                                                                        DHA02890
                                                                                        DHA02900
                                                                                        DHA02910
                                                                                        DHA02920
                                                                                        DHA02930
                                                                                        DHA02940
       IF(RESP1.EQ.2.)GO TO 20
IF(RESP1.EQ.3.)GO TO 30
                                                                                        DHA02950
                                                                                        DHA02960
       IF(RESP1.EQ.4.)GO TO 50
IF(RESP1.EQ.6..OR.RESP1.EQ.9999)GO TO 9999
                                                                                        DHA02970
                                                                                        DHA02980
       IF(RESP1.EQ.8888.)GO TO 9998
                                                                                        DHA02990
       GO TO 99
                                                                                        DHA03000
                                                                                        DHA03010
 9998 WRITE(10,914)
914 FORMAT(/5X, THE PROGRAM HAS BEEN RESTARTED.')
GO TO 7
                                                                                        DHA03020
                                                                                        DHA03030
                                                                                        DHA03040
                                                                                        DHA03050
 9999 WRITE(10,913)
913 FORMAT(/5X, THE PROGRAM HAS BEEN TERMINATED BY THE USER.')
                                                                                        DHA03060
                                                                                        DHA03070
                                                                                        DHA03080
                                                                                        DHA03090
C
                                                                                        DHA03100
Ċ*
                                                                                       *DHA03120
ć*
       SUBROUTINES AND FUNCTIONS
                                                                                       *DHA03130
C*
                                                                                       *DHA03140
DHA03160
C*****COMPUTE TOTAL TREE HEIGHTS
                                                                                        DHA03170
                                                                                        DHA03180
       FUNCTION TREEHT (DBH)
                                                                                        DHA03190
       COMMON/AREAZ/HGTD, TWS, TOF, DMAX, AGE
TREEHT=10.##(-.040006+(1./DBH-1./DMAX)#(.428373-.497483#
:___ALOG10(TWS)+.363755/AGE+1.095404#ALOG10(HGTD)))
                                                                                        DHA03200
                                                                                        DHA03210
                                                                                        DHA03220
       TREEHT=HGTD/TREEHT
                                                                                        DHA03230
       RETURN
                                                                                        DHA03240
       END
                                                                                        DHA03250
                                                                                        DHA03260
C****CHECK RESPONSES
                                                                                        DHA03270
                                                                                        DHA03280
       SUBROUTINE RESPSI(X)
                                                                                        DHA03290
       WRITE(10,102)X
                                                                                        DHA03300
```

```
102 FORMAT(5X, 'WARNING: SPECIFIED VALUE OF', F7.1,2X, &'IS BEYOND DATA RANGE,'/ &14X,'ILLOGICAL OR INCONSISTENT RESULTS MAY BE OBTAINED.')
                                                                                              DHA03310
                                                                                              DHA03320
                                                                                              DHA03330
        RETURN
                                                                                              DHA03340
        END
                                                                                              DHA03350
 С
                                                                                              DHA03360
        SUBROUTINE RESPS2(RESP)
   SUBROUTINE RESPSE(RESP)

1 WRITE(10,103)

103 FORMAT(5X, 'ENTER: 1 IF YOU WANT TO SPECIFY ANOTHER VALUE,'/
&12X,'2 IF NOT.')
READ(10,*)RESP
IF(RESP.EQ.9999.)RETURN
IF(PESP FO 1 OR RESP.FO.2..OR.RESP.EQ.8888.)GO TO 2
                                                                                              DHA03370
                                                                                              DHA03380
                                                                                              DHA03390
                                                                                              DHA03400
                                                                                              DHA03410
                                                                                              DHA03420
        IF(RESP.EQ.1..OR.RESP.EQ.2..OR.RESP.EQ.8888.)GO TO 2
                                                                                              DHA03430
     GO TO 1
2 RETURN
                                                                                              DHA03440
                                                                                              DHA03450
        END
                                                                                              DHA03460
С
                                                                                              DHA03470
C*****CALCULATE B AND C PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                              DHA03480
        (BURK AND BURKHART 1984. VPI&SU FWS-1-84).
                                                                                              DHA03490
C
                                                                                              DHA03500
        SUBROUTINE WEIB(X1, X2, LOCA, BL, TL, B, C, X1P, X2P, IER)
                                                                                              DHA03510
        IMPLICIT REAL#8 (Z)
                                                                                              DHA03520
        REAL LOCA
                                                                                              DHA03530
        COMMON/AREA3/ZA, ZB, ZC, ZD1, ZD2
                                                                                              DHA03540
C
                                                                                             DHA03550
                                                                                             DHA03560
        ZA=DBLE(LOCA)
                                                                                             DHA03570
        B=0.0
                                                                                              DHA03580
        C = 0.0
                                                                                              DHA03590
        ZD2=DBLE(X2)
                                                                                             DHA03600
        X1P=X1
                                                                                              DHA03610
        X2P=X2
                                                                                             DHA03620
        IFLAG=0
                                                                                             DHA03630
C
                                                                                             DHA03640
    10 ZD1=DBLE(X1P)
                                                                                             DHA03650
        ZXN=DBLE(BL)
                                                                                             DHA03660
        ZFXN=ZFCV(ZXN)
                                                                                             DHA03670
        IF(ZFXN.LT.O.DO)GO TO 30
                                                                                             DHA03680
        IER=2
                                                                                             DHA03690
        IF(IFLAG.EQ.0)GO TO 20
                                                                                             DHA03700
        IER=3
                                                                                             DHA03710
       RETURN
                                                                                             DHA03720
    20 X1P=X1P+.01
                                                                                             DHA03730
       GO TO 10
                                                                                             DHA03740
    30 ZXN1=DBLE(TL)
ZFXN1=ZFCV(ZXN1)
                                                                                             DHA03750
                                                                                             DHA03760
        IF(ZFXN1.GT.O.DO)GO TO 40
                                                                                             DHA03770
        IER=2
                                                                                             DHA03780
       IFLAG=1
                                                                                             DHA03790
       X1P=X1P-.01
                                                                                             DHA03800
       GO TO 10
                                                                                             DHA03810
С
                                                                                             DHA03820
   40 DO 60 J=1,5
ZTEMP=(ZXN+ZXN1)/2.DO
                                                                                             DHA03830
                                                                                             DHA03840
       ZFTEMP=ZFCV(ZTEMP)
                                                                                             DHA03850
```

```
IF(ZFTEMP#ZFXN.LE.O.DO)GO TO 50
                                                                                           DHA03860
                                                                          49,5
       ZXN=ZTEMP
                                                                                           DHA03870
       ZFXN=ZFTEMP
                                                                                           DHA03880
   GO TO 60
50 ZXN1=ZTEMP
                                                                                           DHA03890
                                                                                           DHA03900
        ZFXN1=ZFTEMP
                                                                                           DHA03910
    60 CONTINUE
                                                                                           DHA03920
C
                                                                                           DHA03930
       DO 70 J=1,100
ZTEMP=ZXN-ZFXN*(ZXN-ZXN1)/(ZFXN-ZFXN1)
                                                                                           DHA03940
                                                                                           DHA03950
        ZXN1=ZXN
                                                                                           DHA03960
        ZFXN1=ZFXN
                                                                                           DHA03970
       ZXN=ZTEMP
ZXN=ZFCV(ZXN)
IF(DABS(ZFXN).LE.0.00001D0)GO TO 80
                                                                                           DHA03980
                                                                                           DHA03990
                                                                                           DHA04000
    70 CONTINUE
                                                                                           DHA04010
        1 ER=1
                                                                                           DHA04020
       X2P=ZD2-ZFXN
                                                                                           DHA04030
    80 C=ZC
                                                                                           DHA04040
       B=ZB
                                                                                           DHA04050
       RETURN
                                                                                           DHA04060
       END
                                                                                           DHA04070
С
                                                                                           DHA04080
       DOUBLE PRECISION FUNCTION ZFCV(ZX)
IMPLICIT REAL*8 (Z)
COMMON/AREA3/ZA,ZB,ZC,ZD1,ZD2
                                                                                           DHA04090
                                                                                           DHA04100
                                                                                           DHA04110
       ZC=ZX
                                                                                           DHA04120
       ZG1=DGAMMA(1.D0+1.D0/ZC)
                                                                                           DHA04130
       ZG2=DGAMMA(1.D0+2.D0/ZC)
ZB=(ZD1-ZA)/ZG1
                                                                                           DHA04140
                                                                                           DHA04150
       ZFCV=ZD2-ZÁ*ZA-2.D0*ZA*ZB*ZG1-ZB*ZB*ZG2
                                                                                           DHA04160
       RETURN
                                                                                           DHA04170
       END
                                                                                           DHA04180
                                                                                           DHA04190
C*****CALCULATION OF TOTAL BASAL AREA BY DIAMETER CLASS.
                                                                                           DHA04200
                                                                                           DHA04210
        FUNCTION BDIST(DBH)
                                                                                           DHA04220
       COMMON/AREA1/DAVG, D2AVG, A, B, C
                                                                                           DHA04230
       BDIST = 0.
                                                                                           DHA04240
   BDIST = U.

XX = 1.

XY = C * ALOG((DBH-A)/B)

IF(XY,GT.4.) RETURN

IF(XY,LT.-10.) GO TO 30

XX = EXP(-(((DBH-A)/B)**C))

30 BDIST = 0.005454154*DBH*DBH*C/B*((DBH-A)/B)**(C-1.)*XX
                                                                                           DHA04250
                                                                                           DHA04260
                                                                                           DHA04270
                                                                                           DHA04280
                                                                                           DHA04290
                                                                                           DHA04300
                                                                                           DHA04310
       END
                                                                                           DHA04320
                                                                                           DHA04330
C*****CALCULATION OF TOTAL CUBIC FOOT OUTSIDE BARK VOLUME BY DIAMETER
                                                                                           DHA04340
       CLASS (BURKHART ET AL. 1972).
                                                                                           DHA04350
                                                                                           DHA04360
       FUNCTION VDIST(DBH)
                                                                                           DHA04370
       COMMON/AREA1/DAVG, D2AVG, A, B, C
                                                                                           DHA04380
       VDIST = 0.
                                                                                           DHA04390
       XX = 1.
                                                                                           DHA04400
```

```
XY = C * ALOG((DBH-A)/B)

IF(XY.GT.4.) RETURN

IF(XY.LT.-10.)GO TO 30

XX = EXP(-(((DBH-A)/B)**C))

30 VDIST = (0.34864+0.00232*DBH*DBH*TREEHT(DBH))*C/B

&*((DBH-A)/B)**(C-1.)*XX

RETURN
                                                                                                          DHA04410
                                                                                                          DHA04420
                                                                                                          DHA04430
                                                                                                          DHA04440
                                                                                                          DHA04450
                                                                                                          DHA04460
         RÈTURN
                                                                                                          DHA04470
         END
                                                                                                          DHA04480
                                                                                                          DHA04490
C*****NUMBERICAL INTEGRATION (HAFLEY ET AL. 1982. NC STATE UNIV. C TECH REPORT 1).
                                                                                                          DHA04500
Č
                                                                                                          DHA04510
                                                                                                          DHA04520
         FUNCTION GAUS (F,A,B)
DIMENSION C(10),D(10)
                                                                                                          DHA04530
                                                                                                          DHA04540
         EXTERNAL F
                                                                                                          DHA04550
C
                                                                                                          DHA04560
                   C/.0765265,.2277858,.3737061,.510867,.6360537,.7463319,.8391170,.912234,.9639719,.9931286/
         DATA
                                                                                                          DHA04570
       &
                                                                                                          DHA04580
С
                                                                                                          DHA04590
                   D/.1527534,.1491730,.1420961,.1316886,.1181945,.1019301,.0832767,.0626720,.0406014,.0176140/
        DATA
                                                                                                          DHA04600
                                                                                                          DHA04610
         S=(B-A)/2.
                                                                                                          DHA04620
         T=A+S
                                                                                                          DHA04630
         P=0.
                                                                                                          DHA04640
        DO 200 K=1,10
P=P+D(K)*(F(S*C(K)+T)+F(T-S*C(K)))
                                                                                                          DHA04650
                                                                                                          DHA04660
  200 CONTINUÉ
                                                                                                          DHA04670
        GAUS=P*S
                                                                                                          DHA04680
        RETURN
                                                                                                          DHA04690
        END
                                                                                                         DHA04700
```

DEFINITIONS OF VARIABLES USED IN THE PROGRAM HOWD

```
Α
          location parameter of the Weibull distribution
AD2AVG
          modifies OD2AVG to D2AVG
AGE.
          age of plantation
AMIN
          modifies OFMIN to DMIN
ARTH
          arithmetic mean dbh (in.)
ASUM
          weighted sum of dbh (in.)
          scale parameter of the Weibull distribution
В
BAH
          basal area in hardwood (sq ft/ac)
BAL
          basal area in pine on a woods site (sq ft/ac)
BAP
          basal area in pine on an old field site (sq ft/ac)
BCL(I)
          basal area in pine for diameter class i (sq ft/ac)
BL
          bottom limit of the shape parameter 'C
BSUM
          sum of BCL (sq ft/ac)
C
          shape parameter of the Weibull distribution
DAVG
          average stand diameter (in.) of pine as adjusted by BAH
DBH
          diameter at breast height (in.)
D2AVG
          average squared stand diameter (sq in.) of pine as adjusted by BAH
DCL(I)
          number of pine for diameter class i (trees/ac)
DDCL
          same as DCL
         IMSL double precision routine solving for the parameters of the gamma
DGAMMA
          distribution
DL
          lower bound of diameter class i (in.)
DMIN
          minimum diameter class of pine (in.)
DMAX
          maximum diameter class of pine (in.)
DSUM
          sum of DCL (trees/ac)
          upper bound of diameter class i (in.)
DU
HGT
          total height of pine (ft)
HGTD
          average height of the pine dominants and codominants (ft)
ODAVG
          old field average stand diameter of pine (in.)
          old field average squared stand diameter of pine (sq in.)
OD2AVG
OFMIN
          old field minimum stand diameter of pine (in.)
PERBAH
          percent basal area in hardwood
          pulpwood yield of planted pine 5 in. dbh and greater to a 4 in. top
PCL(1)
          outside bark diameter (cu ft/ac) for diameter class i
PSUM
          sum of PCL (cu ft/ac)
RESPI
          responses to questions
SCL(I)
          sawlog yield of planted pine 8 in. dbh and greater to a 6 in. top out-
          side bark diameter (cu ft/ac) for diameter class i
SI
          site index base age 25 (ft)
SSUM
          sum of SCL (cu ft/ac)
          top limit of shape parameter 'C'
TL
          number of surviving pine on an old field site (trees/ac)
TOF
TP
          number of planted pine (trees/ac)
TREEHT
          same as HGT
TWS
          number of surviving pine (trees/ac) as adjusted by BAH
VAR
          variance of pine dbh
VCL(I)
          total yield of planted pine 1 in. dbh and greater (cu ft/ac) for diam-
          eter class i
VSUM
          sum of VCL (cu ft/ac)
```

BASIC LISTING

```
IBM Personal Computer BASIC Formatter and Cross-Reference
                                                     V 1.00
    10
 20
    REM
          A GROWTH AND YIELD PREDICTION MODEL FOR THE PLANTED COMPONENT
 30
    REM
          OF UNTHINNED LOBLOLLY PINE PLANTATIONS CONTAINING HARDWOODS
 40
    REM
          BY PETER T. SPRINZ
                            VPI&SU
                                   FWS-3-84
 50
    60
    CLS:
    PRINT:
    PRINT:
    PRINT:
    PRINT
 70
    PRINT
            A GROWTH AND YIELD PREDICTION MODEL FOR THE PLANTED COMPONENT
 80
    PRINT
             OF UNTHINNED LOBLOLLY PINE PLANTATIONS CONTAINING HARDWOODS.
 90
    PRINT:
    PRINT
    PRINT
100
      "Values to responses need to be in ENGLISH units (i.e., trees/ac, fe
         t)."
110
    PRINT:
    PRINT "A response can be entered as either INTEGER- or REAL-valued."
120
    PRINT:
    PRINT "ENTER: 9999 at any time to TERMINATE the program,"
130
    PRINT "
               8888 at any time to RESTART the program."
    PRINT:
140
    PRINT "PRESS any key to CONTINUE", A$=INPUT$(1):
    CLS
    REM****************************
150
160
    K=.4342944819#
170
    DIM
      DCL(50),
      BCL(50),
      VCL(50),
      PCL(50),
      SCL(50)
180
    PRINT:
    PRINT
190
    RESP1=5
    200
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
                                           ---
210
     IF
        RESP1>=2 AND RESP1<=4
           THEN
              GOTO 350
220
     INPUT "ENTER THE NUMBER OF LOBLOLLY PINE PLANTED (trees/acre)....",TP
230
     ΙF
        TP>=200 AND TP<=1600
           THEN
              GOTO 350
240
     IF
        TP=9999
           THEN
              GOTO 2060
250
     IF
        TP=8888
           THEN
              GOTO 2050
260
     ICK=TP:
     GOSUB 2100
270
     PRINT "DATA RANGE IS FROM 200 TO 1600 TREES/ACRE."
280
        TP>=4000 OR TP<=50
           THEN
              GOTO 210
290
     GOSUB 2140
300
     IF
        RESP=1
           THEN
              GOTO 210
310
     IF
        RESP=2
           THEN
              GOTO 350
320
     IF
        RESP=9999
           THEN
              GOTO 2060
330
     IF
        RESP=8888
           THEN
              GOTO 2050
340
     REM
350
     IF
        RESP1=1 OR RESP1=3 OR RESP1=4
           THEN
              GOTO 490
360
     INPUT "ENTER SITE INDEX BASE AGE 25 (feet).....,SI
```

370

IF

SI>=40 AND SI<=90

THEN

```
IBM Personal Computer BASIC Formatter and Cross-Reference
                GOTO 490
 380
      IF
         SI=9999
             THEN
                GOTO 2060
 390
      IF
         SI=8888
             THEN
                GOTO 2050
 400
      ICK=SI:
      GOSUB 2100
      PRINT "DATA RANGE FOR SITE INDEX IS FROM 40 TO 90 FEET."
410
420
      IF
         SI>=200 OR SI<=20
            THEN
                GOTO 350
430
      GOSUB 2140
440
      IF
         RESP=1
            THEN
               GOTO 350
450
      IF
         RESP=2
            THEN
               GOTO 490
460
      IF
         RESP=9999
            THEN
               GOTO 2060
470
     IF
         RESP=8888
            THEN
               GOTO 2050
480
     REM
490
     IF
         RESP1<=2 OR RESP1=4
            THEN
               GOTO 630
500
     INPUT
         "ENTER PERCENT OF BASAL AREA IN HARDWOODS (e.g., 4, 20)...",
           PERBAH
510
     ĪF
        PERBAH>=0 AND PERBAH<=90
            THEN
               GOTO 630
520
     IF
        PERBAH=9999
           THEN
               GOTO 2060
530
     IF
        PERBAH=8888
```

THEN

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
               GOTO 2050
540
     ICK=PERBAH:
     GOSUB 2100
550
     PRINT "DATA RANGE IS 0 TO 90 PERCENT."
560
     IF
        PERBAH>100 OR PERBAH<0
            THEN
               GOTO 490
570
     GOSUB 2140
580
        RESP=1
            THEN
               GOTO 490
590
     IF
        RESP=2
            THEN
               GOTO 630
600
     IF
        RESP=9999
            THEN
               GOTO 2060
610
     IF
        RESP=8888
            THEN
               GOTO 2050
620
     REM
     IF
630
        RESP1 <= 3
            THEN
               GOTO 840
640
     PRINT "ENTER STAND AGE,"
     INPUT "
650
                AGE MUST BE GREATER THAN OR EQUAL TO 10 YEARS....., AGE
660
     AGE% = AGE
670
     IF
        AGE>=10 AND AGE<=45
            THEN
               GOTO 840
680
     IF
        AGE = 9999
            THEN
               GOTO 2060
690
     IF
        AGE = 8888
            THEN
               GOTO 2050
700
     ICK=AGE:
     GOSUB 2100
710
     PRINT "DATA RANGE IS FROM 10 TO 45 YEARS."
720
     IF
         AGE>=100 OR AGE<10
            THEN
               GOTO 630
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
730
    GOSUB 2140
740
    IF
       RESP=1
         THEN
            GOTO 630
750
    IF
       RESP=2
         THEN
            GOTO 840
760
    IF
       RESP=9999
         THEN
            GOTO 2060
770
    IF
      RESP=8888
         THEN
            GOTO 2050
780
    REM
790
    800
    REM COMPUTE STAND ATTRIBUTES
810
    820
    REM***>> COMPUTE OLD FIELD SURVIVING TREES/AC (COILE & SCHUMACHER 1964)
830
840
    TOF=K*LOG(TP)+(AGE/100)*(2.273-1.1103*K*LOG(TP))
850
    TOF=10 TOF
860
    REM***>> COMPUTE AVG HEIGHT OF DOM & CODOMINATES (AMATEIS & BURKHART
870
      1984)
    HGTD=LOG(SI)*((AGE/25)^.10283)*EXP(-2.1676*((1/AGE)-(1/25)))
880
890
    HGTD = EXP(HGTD)
900
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
 910
     REM***>> COMPUTE OLD FIELD BASAL AREA/ACRE
 920
     BAP=10^(.38749+1.121332*K*LOG(HGTD)+.975619/AGE-92.324443#/TOF)
     BAH=BAP*PERBAH/100:
 930
      BAL=BAP-BAH
 940
     ΙF
         BAL<=0
           THEN
               GOTO 1270
 950
 960
      REM***>> COMPUTE NUMBER OF TREES/ACRE ADJUSTED BY BASAL AREA IN HARDWOOD
 970
     TWS=TOF*10^(-(PERBAH/100)^1.781844)
     PFM***************************
 980
 990
     REM***>> COMPUTE AVERAGE SQUARED DIAMETER OLD FIELD (OD2AVG), VARIANCE
         OF DBH (VAR) AND MINIMUM DIAMETER OLD FIELD (OFMIN).
1000
      VAR=EXP(2.8366-.2979*LOG(TOF)-20.422/HGTD+.0003872*AGE^2)
1010
     OD2AVG=BAP/(.005454*TOF)
1020
     OFMIN=-4.10834+.17828*AGE+1.04138*HGTD/AGE+947.466/TOF
1030
      REM***>> CALCULATE THE ADJUSTMENT FUNCTIONS BASED ON THE AMOUNT OF
1040
         BASAL AREA IN HARDWOOD
1050
     ΙF
         BAH>0
            THEN
               AD2AVG=-(BAH^.912618)*(-9.688E-05*BAL+.068787/AGE
                  +.0045984*LOG(HGTD))
1060
     IF
         BAH>0
            THEN
               AD2AVG=EXP(AD2AVG)
1070
     IF
         BAH=0
            THEN
               AD2AVG=1
1080
     IF
         BAH>0
            THEN
               AMIN=-(BAH^.000427)*(-.595414#*LOG(BAL)+6.90102/AGE
                  +.738295*LOG(HGTD))
```

```
1BM Personal Computer BASIC Formatter and Cross-Reference V 1.00
1090
      IF
          BAH>0
            THEN
               AMIN=EXP(AMIN)
1100
      IF
          BAH=0
            THEN
               AMIN=1
1110
      REM***>> MODIFY THE OLD FIELD ESTIMATES OF THE MOMENTS TO REPRESENT
1120
         WOOD SITE CONDITIONS CONTAINING A SPECIFIED AMOUNT OF BASAL
         AREA IN HARDWOOD.
1130
      D2AVG=OD2AVG*AD2AVG
1140
      DMIN=OFMIN*AMIN
1150
      DAVG2=D2AVG-VAR
1160
      ΙF
         DAVG2<=0
            THEN
               GOTO 1270
1170
      DAVG=SQR(DAVG2)
      REM****************************
1180
1190
      REM***>> CALCULATE ESTIMATES OF THE WEIBULL PARAMETERS
1200
      A=DMIN*.5
1210
      IF
         A<=.5
            THEN
               A = .5
      GOSUB 2200
1220
1230
      IF
         B<=0
            THEN
               GOTO 1270
1240
      IF
         DAVG<=A
            THEN
               GOTO 1270
1250
      IF
         IER=1 OR IER=3
            THEN
               GOTO 1270
1260
      GOTO 1350
1270
     CLS:
```

PRINT: PRINT

pr.	pm rersonal Computer BASIC Formatter and Cross-Reference V 1.00
1280 1290	PRINT "THE COMBINATION OF INPUT RESULTED IN EITHER NO SOLUTION OR" PRINT "AN ILLOGICAL SOLUTION OF THE 6 OR c WEIBULL PARAMETERS.": PRINT
1300	GOTO 1870
1310	REM
1320	REM************************************
1330	REM GIVEN THE PARAMETER ESTIMATES, DERIVE THE STAND TABLE
1340	REM************************************
1350 1360	CLS PRINT STAND AND STOCK TABLE FOR THE DIANTED BINE COMPONENT OF B
1370 1380	" STAND AND STOCK TABLE FOR THE PLANTED PINE COMPONENT OF" PRINT " AN UNTHINNED LOBLOLLY PINE PLANTATION" PRINT

1390	PRINT USING "TREES PLANTED = ####.# /AC SITE INDEX = ###.# FEET (B ASE 25)"; TP, SI
1400	PRINT USING "% BASAL AREA IN HARDWOOD = ###.# AGE = ##"; PERBAH, AGE%
1410 1420	PRINT PRINT
	CUBIC FOOT VOLUMES PER ACRE-
1430	PRINT " NUMBER TOTAL BASAL TOTAL PULPWOOD SAWLOG"
1440	PRINT " DBH TREES HEIGHT AREA lin + 5in + 8in + "
1450	PRINT inches /acre feet sqft/ac 4in top 6in top
	en the management of the top of the top
1460	REM************************************
1470	REM***>> COMPUTE THE PREDICTED DISTRIBUTIONS
1480	REM************************************

1490 I% = A:

```
1BM Personal Computer BASIC Formatter and Cross-Reference
                                                                 V 1.00
      DL=A+.01:
      DU = 1\% + .5
 1500
      DDCL=TWS*(EXP(-(((DL-A)/B)^C))-EXP(-(((DU-A)/B)^C)))
1510
         I% > DAVG AND DDCL < .5
            THEN
               GOTO 1550
1520
      DMAX=I%
1530
      1\% = 1\% + 1:
      DU=1%+.5:
      DL = 1\% - .5
1540
      GOTO 1500
1550
      DSUM=0:
      BSUM=0:
      VSUM=0:
      PSUM=0:
      SSUM=0:
      ASUM=0
1560
      I% = A:
      DL=A+.01:
      DU = 1\% + .5
      DCL(I%)=TWS*(EXP(-(((DL-A)/B)^C))-EXP(-(((DU-A)/B)^C)))
1570
1580
      IF
         DCL(1%)<0
            THEN
               DCL(I%)=0
1590
      D1 = 1%
1600
      IF
         D1>DMAX
            THEN
               GOTO 1810
1610
      BCLASS=5.454154E-03*D1*D1
      HGT=10^(-.040006+(1/D1-1/DMAX)*(.428373-.497483*K*LOG(TWS)+.363755/AGE
1620
         +1.095404*K*LOG(HGTD)))
1630
      HGT=HGTD/HGT
      1640
      REM***>> CALCULATE CUBIC FOOT OUTSIDE BARK VOLUME (BURKHART ET AL. 1972)
1650
1660
      VCLASS=.34864+.00232*D1*D1*HGT
      BCL(I%)=DCL(I%)*BCLASS:
1670
      VCL(I%)=DCL(I%)*VCLASS
1680
      IF
         VCL(I%)<.05
            THEN
               GOTO 1790
1690
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
-1700
       REM***>> CALCULATE MERCH VOL AS A RATIO OF TOTAL VOLUME (BURKHART 1977).
1710
       PCL(I%)=VCL(I%)*(1-.32354*((4^3.1579)/(D1^2.7115)))
       SCL(I%)=VCL(I%)*(1-.32354*((6^3.1579)/(D1^2.7115)))
1720
1730
       DSUM=DSUM+DCL(I%):
       BSUM=BSUM+BCL(I%):
       VSUM=VSUM+VCL(I%):
       ASUM=ASUM+I% *DCL(I%)
1740
       IF
          I% >=5
             THEN
                PSUM=PSUM+PCL(I%)
1750
       IF
          1\% >= 8
             THEN
                 SSUM=SSUM+SCL(I%)
1760
       IF
          1\% > = 8
             THEN
                 PRINT USING
                    91
                             ##
                                    ###.#
                                             ### #
                                                      ###.#
                                                                ####.#
                         ####.#"; I%, DCL(I%), HGT, BCL(I%), VCL(I%), PCL(I%), SCL(I%)
1770
       IF
          I% >= 5 AND I% < 8
             THEN
                 PRINT USING
                             ##
                                             ### #
                                    ###.#
                                                      ###.#
                                                                #### #
                                                                          ##### #11:
                       I%, DCL(I%), HGT, BCL(I%), VCL(I%), PCL(I%)
1780
       IF
          I% <5
             THEN
                 PRINT USING "
                                       ##
                                               ###.#
                                                       ### #
                                                                ###.#
                                                                          #### . # " : 1% ,
                    DCL(1%),
                       HGT, BCL(I%), VCL(I%)
1790
       1\% = 1\% + 1:
       DU = 1\% + .5:
       DL = 1\% - .5
1800
       GOTO 1570
1810
       ARTH=ASUM/DSUM
1820
       PRINT USING
                  TOTALS ####.#
                                             ###_#
                                                    ########
                                                               #######
                                                                           ###### . # " :
             DSUM, BSUM, VSUM, PSUM, SSUM
1830
       PRINT:
       PRINT USING "
                            ARITHMETIC MEAN = ##.## inches"; ARTH
       PRINT "PRESS any key to CONTINUE", A$=INPUT$(1)
1840
 1850
       CLS
       REM
 1860
 1870
       PRINT "THE PREVIOUS INPUT WAS AS FOLLOWS:":
       PRINT
 1880
       PRINT USING "
                            TREES PER ACRE ......
                        1
       PRINT USING "
                            SITE INDEX .....
 1890
                        2
                                                            ###.#":SI
 1900
       PRINT USING "
                        3
                            % BASAL AREA IN HARDWOOD ...
                                                            ###.#":PERBAH
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
1910
     PRINT USING " 4
                         AGE ......
                                                        ##": AGE%
1920
     PRINT:
     PRINT "IF ANOTHER PROJECTION IS DESIRED,"
1930
      PRINT "
               ENTER THE NUMBERED ITEM TO BE CHANGED,"
               ENTER THE NUMBER 5 IF MORE THAN 1 ITEM IS TO BE CHANGED,"
1940
      PRINT "
      INPUT "OTHERWISE, ENTER THE NUMBER 6 TO TERMINATE THE PROGRAM...", RESPL
1950
1960
      PRINT
1970
      IF
         RESP1=1 OR RESP1=5
            THEN
               GOTO 210
1980
      IF
         RESP1=2
            THEN
               GOTO 350
1990
      IF
         RESP1=3
            THEN
               GOTO 490
2000
      IF
         RESP1=4
            THEN
               GOTO 630
2010
      IF
         RESP1=6 OR RESP1=9999
            THEN
               GOTO 2060
2020
      IF
         RESP1=8888
            THEN
               GOTO 2050
2030
      GOTO 1850
2040
     REM
     PRINT:
2050
     PRINT "THE PROGRAM HAS BEEN RESTARTED.":
     PRINT:
      GOTO 190
2060
     PRINT:
     PRINT "THE PROGRAM HAS BEEN TERMINATED BY THE USER."
2070
      END
2080
      \mathsf{LEM}_{\mathsf{M}}
2090
      REM***>> CHECK RESPONSES
2100
      PRINT
2110
      PRINT USING
         "WARNING: SPECIFIED VALUE OF ####.# IS BEYOND DATA RANGE,":
            ICK
2120
      PRINT:
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
      PRINT "ILLOGICAL OR INCONSISTENT RESULTS MAY BE OBTAINED.":
      RETURN
2130
     REM
2140
      PRINT "ENTER: 1 IF YOU WANT TO SPECIFY ANOTHER VALUE,"
      INPUT "
2150
                   2 IF NOT.", RESP:
      PRINT
2160
      IF
        RESP=1 OR RESP=2 OR RESP=8888 OR RESP=9999
           THEN
              RETURN
2170
      GOTO 2140:
      RETURN
2180
      REM***>> CALCULATE b AND c PARAMETERS OF WEIBULL DISTRIBUTION
2190
                         (BURK & BURKHART 1984 VPI&SU FWS-1-84).
2200
      SHAPEL=1:
      SHAPEU=5
2210
      IER% = 0:
     A#=A:
      B=0:
     C=0:
     D22#=D2AVG:
     D1P=DAVG:
     D2P=D2AVG:
     IFLAG% = 0
2220
     D1#=D1P:
     XN#=SHAPEL:
     C#=XN#:
      ( THEN )
        GOSUB 2410:
        FXN#=FVAL#
2230
      IF
        FXN#<0
           THEN
              GOTO 2250
           ELSE
              IER% = 2
2240
     IF
        IFLAG% <>0
              THEN
                 IER% = 3:
                 RETURN
              ELSE
                 D1P=D1P+.01:
                 GOTO 2220
2250
     XN1#=SHAPEU:
     C#=XN1#:
```

```
1BM Personal Computer BASIC Formatter and Cross-Reference
                                                                       V 1.00
       GOSUB 2410:
       FXN1#=FVAL#
 2260
       IF
          FXN1#>0
             THEN
                 GOTO 2270
             ELSE
                 IER% = 2:
                 IFLAG% = 1:
                    D1P=D1P-.01:
                    ( THEN )
                       GOTO 2220
2270
       FOR J% = 1 TO 5
2280
          TEMP#=(XN#+XN1#)/2#:
          C#=TEMP#:
          GOSUB 2410:
          FTEMP#=FVAL#
2290
             FTEMP#*FXN#<=0
                THEN
                    XN1#=TEMP#:
                    FXN1#=FTEMP#
                ELSE
                    XN#=TEMP#:
                    FXN#=FTEMP#
2300
       NEXT
2310
      FOR J%=1 TO 100
2320
          TEMP#=XN#-FXN#*(XN#-XN1#)/(FXN#-FXN1#)
2330
          XN1 #= XN#:
          FXN1#=FXN#:
          XN#=TEMP#:
          C#=XN#:
          GOSUB 2410:
          FXN#=FVAL#
2340
          IF
             FXN#>-.00001# AND FXN#< .00001#
                THEN
                   GOTO 2370
2350
      NEXT
2360
      IER% = 1:
      D2P=D22#-FXN#
2370
      B=B#:
      C=C#
2380
      RETURN
2390
      REM***>> FUNCTION FOR RECOVERING WEIBULL PARAMETERS
2400
2410
      ZX#=1#+1#/C#:
      GOSUB 2480:
      G1#=GAMMA#
```

```
IBM Personal Computer BASIC Formatter and Cross-Reference V 1.00
      ZX#=1#+2#/C#:
2420
      GOSUB 2480:
      G2#=GAMMA#
      B#=(D1#-A#)/G1#
2430
2440
      FVAL#=D22#-A#*A#-2#*A#*B#*G1#-B#*B#*G2#
2450
      RETURN
      REM
2460
2470
      REM***>> DOUBLE PRECISION GAMMA FOR AN ARGUMENT >+1
2480
      N\% = ZX \# - .5 \#:
      XI#=N%:
      N% = X I # - 1 #
      FRAC#=ZX#-XI#
2490
      GAMMA#=1#+FRAC#*(-.577191652#+FRAC#*(.988205891#+FRAC#*(-.897056937#
2500
         +FRAC#*(.918206857#))))
2510
      GAMMA#=GAMMA#+FRAC#^5*(-.756704078#+FRAC#*(.482199394#+FRAC#*(-
         .193527818# +FRAC#*(.035868343#))))
      IF
2520
         N\% = 0
            THEN
               RETURN
      PROD#=1#
2530
      FOR L%=1 TO N%:
2540
         L#=L%:
         PROD#=PROD#*(FRAC#+L#):
      NEXT
      GAMMA#=GAMMA#*PROD#
2550
2560
      RETURN
```